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Top Ten Challenges for Exascale: Areas where
Research and advances are needed!

5735, Top Ten Exascale - Energy Efficiency v 4

| [/ )7) Research Challenges

e Interconnect Technology
Memory Technology v

Scalable System Software
Programming Systems e
Data Management 4
Exascale Algorithms

Algorithms for Discovery, Design
& Decision

@EERGY oo o

goE ASCAC o. Resilience and Correctness
ubcommittee Report _ o ..
Feb 2014 10. Scientific Productivity v

THE GEORGE

Data movement and/or programming related et

WASHINGTON, DC




‘ Technological Challenges: Combined Bandwidth
and Energy Challenges for Exascale

Bandwidth density vs. system distance Energy vs. system distance
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Locality and data movement matter a lot, cost (energy and time)
rapidly increases with distance

Locality and data movement are critical even at short distance,
more so at far distances
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Technological Challenges : (2) Bandwidth

Widening gap between available 1/0

Growing manycore bandwidth requirements
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+ Interconnect is not keeping up with the growth in compute capability
> Many apps require 1 Byte/FLOP off-chip, not possible in 10 TFLOPs chips and beyond

> Huge bandwidth density (GB/s/pm) needed on-chip due to large #cores in small area
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Architectural Challenges: Architectures are becoming
Deeply Hierarchical in Extreme Scale — Chips and
Systems
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Architectural Challenges: Architectures are becoming
Deeply Hierarchical in Extreme Scale — Chips and
Systems
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Architectural Challenges: Architectures are becoming
Deeply Hierarchical in Extreme Scale — Chips and Systems
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chitectural Challenges: Architectures are becoming
Deeply Hierarchical in Extreme Scale — Chips and Systems
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Architectural Challenges: Architectures are becoming

Deeply Hierarchical ﬁﬂfﬂﬂ‘tt € 1ps and Systems
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Architectural Challenges: Architectures are becoming Deeply

Hierarchical in Extreme Scale — Chips and Systems
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Where are Programmming Models from That?

+ What is a programming model?

> An abstract virtual machine
> A view of data and execution
> The logical interface between architecture and applications

+ Why Programming Models?

> Decouple applications and architectures
+ Write applications that run effectively across architectures

+ Design new architectures that can effectively support legacy
applications

¢+ Programming Model Design Considerations

> Expose modern architectural features to exploit machine power
and improve performance

> Maintain Ease of Use

> Two previous points mean increase productivity!
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‘ Current Programming Models and Locality

Awareness

Message Passing

Mocality Awareness

Shared Memory

Localit”wareness

O Process/Thread

Address Space

Partitioned Global
Address Space

Mocality Awareness

-Two-Sided -One-Sided -One-S_ideo_I
Communication Communication Communication
-Example MPI -Example OpenMP -Examples UPC and
Chapel
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PGAS Languages Include UPC,
Chapel and X10

UPC Language Specifications
V1.0

Tarek A. El-Ghazawi
George Washington Universtiy
tarek@Qgwu.edu

William W. Carlson Jesse M Draper
IDA Center for Computing Sciences

wwc@super.org jdraper@super.org

February 2001
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Memory Accesses in UPC- Shared Address

Translation Overheads

Measurement of the address
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‘ Memory Access Costs in Chapel

Tested shared address access
costs in Chapel:

> Used Chapel Syntax to test

Local part of a distributed object,
un-optimized- Accessing local data
without saying local

Local Optimized — local part hand-
optimized by saying “local”
Local and Non-Distributed

Compiler optimization -> 2x faster

Both compiler and hand
optimization -> 70x faster

Compiler optimization affects
remote accesses as well

Both UPC and Chapel require *
unproductive!” hand tuning to
improve local shared accesses

Time (

1.6

Il Local Shared
I Local Shared Opt |}
3 Local

L

no_fast fast no_priv_fast
Compiler Options

Hl Global

no_fast fast no_priv_fast
Compiler Options
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 Fast Address Translation for PGAS

+ Software solutions
> Hand tweaking — Non-productive

> Compiler optimizations - reduced arithmetic for some
straightforward cases

> Look up tables, full and reduced- Take memory! ICPP05
> TLB's ...

¢ Hardware solutions

> Create hardware that understands how to traverse the
PGAS memory model and support basic costly needs

> Avall it through instructions and leverage them by the
compiler

+ Some work for UPC, little for Chapel
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| Hardware Support for PGAS

Example Operations for Support in Hardware
> Shared address incrementing

> Load/store to/from a PGAS shared address

Address translation support: convert a shared address to a system virtual
address used to perform the access

> Locality tests for remote data

Can be used to tell whether to call the network subroutines, by e.g. testing
the affinity field in a work sharing construct

Availed as ISA extension
New instructions used directly by compiler

Current hardware support and instructions only support
address mapping

Future support for remote data accesses and various
types of synchronizations are of interest
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Hardware/Software Co-Design Platform
in a2 Nutshell

First prototype in FPGAs, supports small core count and apps

Second is primarily software, supports bigger core counts and
codes
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| PGAS Hardware Support Overview

= shared [4] int arrayA[32];
arrayA[10] = 5;

-
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| Early Results- NPB Kernels with HW Support
Gemb5 Alpha 21264
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‘ Possible Solutions for Hierarchical

Locality Exploitation
Rewrite your code with low-level tricks to target
the underlying hierarchical architecture?
> Great performance, but not productive & non-portable

Extend programming models with hierarchical
syntax and semantics and ask programmers to
worry about all of those hardware details? (make
them hierarchical-locality-aware!)

> Portable but not productive
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Productive Division of Responsibilities: The
Programmer and the System

+ Programmer

> Use a locality-aware programming paradigm such as
MPI or a PGAS language

> Let programmer worry about the first-order locality,
thread-data affinity
+ System

> Understand your system hierarchy, costs associated
with data movements across levels

> Understand the program characteristics

> Derive locality exploitation on level-by-level basis via
Hierarchical Thread Grouping/partitioning

THE GEORGE
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Motivations and Early Investigations

+ Proper placement will

>

Avoid unnecessary data
movement by exploiting
locality

Utilize the shared
memory and caches in
the neighborhood

Utilize the best
interconnect for the
underlying
communication

Yield a rising benefit as
the size of your system
increases! A must for
exascale!!

Effect of Exploiting Hier Locality (Read Access)

40
m35-40 § 35

m30-35 30

m 25-30 25

m 20-25 20
m15-20
15
m10-15
10
m5-10

Speedup from Proper Placem

mO0-5

Remote Comm (%)

Synthetic benchmark showing the gain of proper
with varying number of threads and percentage of
remote communication
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Motivations and Early Investigations

Put/Write Bandwidth — Cray XE6m

6
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+ The response of each level to communication
varies according to message sizes

> Closer is not always faster
+ Know and characterize your architecture!!
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PHLAME Methodology

(Parallel Hierarchical Abstraction Model of Execution)

Characterize the machine message costs at each level to generate
PHLAME description File (PDF)

Profile the application communication
Build a placement layout for the threads based on the above

Run the application witQ the layout built in the previous step
Communication PHLAME

Benchmarks Description File
- | Placement
b — N ANAX Algorithm Placement
ﬁg % () Fave Target
‘#!j_ | — " 'V‘ A Machine
Application
Instrumented Communication
Program _profile Program "
1_ -2
# — | B :
PCIL, THE GEORGE
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j Characterizing the target machine

+ Message cost: total time for
message to be delivered

Msg(bytes)
Level

0.516956 0.665469 1.209482 1.986097 3.606203 7.593014

0.688468 1.038422 1.54703 2.772387 5.138746 10.86957

0.687853 1.033378 1.543448 2.770083 5.128205 10.85776

0.706414 1.05042 1.548707 2.77855 5.128205 11.02536

Example: time per message (ns) machine communication characterization
D =4 THE GEORGE

CL.
%‘ WASHINGTON
DIVErSIE Tarek El-Ghazawi, GWU 31 UNIVERSITY

High Performance Computing Lab WASHlNGTON, DC




e8®0,,

j Characterizing the application

Afflnlt¥ Thread
000000000 16 18 19 20
OOOEDOOODOED ]wmm!

communication [

) IIIIIIIIIIIIIIII
IIIII

1186110060, 8

+ Instrument the application code :

> generate the communication
activity matrices

+ The message sizes range is
partitioned into bins
> Each bin corresponds to a sub range,
example: 1264, 64->128, ...

+ There are two communication ,,,
Msg

activity matrices for each bin ¢
> Average size

> Number of messages

1037846303,

i .= .=.= ........ 8895825456'

. .-. 741318788.0 |

, IHHIIHH""II'-'I

e IIIIIII===IIIIII
............. 444791272.8

B IIIII SR T [

s EEEEEEEEEEEEEEEEEEEE
" AEEEENEESNEEETEE

" ANEEEEEEEEEEEEEn s

16

a EAN .
.=I

18 . S Bytes

Msg<64 | 64<MsgA128 : 128<Msg<256

593055030.4

Initiating Thread
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Bins

3 Calculating Level Costs "

Msg<64 64<Msg<256 256<Msg<51 2

. , Avg |
+ Placement decisions require a Msg! | ! ; !
measurement of how threads  Size s

fit together

Num of
Msgs

+ Repeat for each level [ :

> For each pair of threads (i, j),
where i # j, calculate the cost of Msgs

their communication costs
-
LevelCost;;— Z(AngsgSizeijb X NumMsgs;j, X LevelBinCosty,) =
Level [
Where B is the number of bins costs
PCL. THE GEORGE
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' Hierarchical Thread Fitness Measure

_ Q Chassis
The fit measure shows T Blade

how twc_> threads benefit Q & 56_6 Cg%lode

or lose if scheduled on a
given level Theads ™
Cost

The fit measure is based
on the difference of

h
Ir;\szlsage costs at eac rr r r

Gain of placement at current level, loss due to placement at current level,
given current level is better given current level is worse
FIT Measure(i,j, L) = Z(Worse — Level) — (Level — Better)
PCL. THE GEORGE
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' Hierarchical Thread Fitness Measure

The fit measure shows
how two threads benefit
or lose if scheduled on a
given level

The fit measure is based
on the difference of
message costs at each
level

Gain of placement at current level,

given current level is better

Q Chassis
\/ Blade

£ o o

EE BE E

loss due to placement at current level,
~given current level is worse

FIT Measure(i,j, L) = E (Worse — Level) — E (Level — Better)

PCL,

gmwgl‘fs? Tarek El-Ghazawi, GWU
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' Hierarchical Thread Fitness Measure

The fit measure shows
how two threads benefit
or lose if scheduled on a
given level

The fit measure is based
on the difference of
message costs at each
level

Gain of placement at current level,

given current level is better

Q Chassis
\/ Blade

EE BE E

loss due to placement at current level,
~given current level is worse

FIT Measure(l,i,j) = E (Worse — Level) — E (Level — Better)

PCL,

gmw@l‘fs? Tarek El-Ghazawi, GWU
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' Hierarchical Thread Fitness Measure

The fit measure shows f
how two threads benefit () Node
or lose if scheduled on a | ¥ cPU
given level

The fit measure is based
on the difference of

h
Ir;\szlsage costs at eac rr r r

Gain of placement at current level, loss due to placement at current level,
given current level is better given current level is worse

FIT Measure(i,j,L) = Z(Worse — Level) — z(Level — Better)
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' Hierarchical Thread Fitness Measure

_ Q Chassis
The fit measure shows T Blade

how twc_> threads benefit OLC OLO C_O_O %Ode

or lose if scheduled on a

given level
The fit measureisbased " ~F ~ ~ T
on the difference of
message costs at each r
level
Gain of placement at current level, loss due to placement at current level,
given current level{\ better ~given current level is worse
FIT Measure(i,j, L) = Z(Worse — Level) — (Level — Better)

THE GEORGE
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‘ Mapping to Graph Theory

mapped into a graph
> Vertices represent the threads

> Edges represent interactions between threads

> HTF at each level are edge weights
+ Multiple weights per edge

Wij1r Wiz, Wijzs oo Wi

o »
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 Hierarchical Graph Partitioning

+ Algorithms can be
> Bottom Up

¢ Form partitions at lower
levels first and recursively
group them at higher
levels

> Top Down

¢ Form partitions at upper
levels first and recursively
break them at lower levels

N

Abstract Machine:
Level,: Width = 4 (# of locales)
MaxLocaleSize = 4 (# of cores in each locale)

Tarek El-Ghazawi, GWU
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‘ Testbed

+ Cray XE6mM/XK7m

> 24 cores per node
+ Two 12-core AMD Magny Cours

> Gemini Interconnect

¢ 2D Torus
+ UPC NPB Benchmark from GWU
> IS —Class C
> FT —Class C
» CG—-Class C
> MG —-Class C
> EP —-Class C

+ Heat Diffusion

PCIL.
The

m‘etgffn Tarek ElI-Ghazawi, GWU

High Performance Computing Lab
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 Profiling the application
communication — Implementation

TAU is selected to profile UPC and MPI
programs

> (Generates activity matrix for each bin
Bins are not supported in TAU profiles

Modifications were made to TAU backend and
frontends to support bins

THE GEORGE
WASHINGTON
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 Customizing GASNet

The clustering algorithm usually
assigns unequal number of threads to
different nodes

The Cray Application Level Placement
Scheduler (ALPS) does not support
this feature

A modified GASNet Geminie Conduit
was used to trick the system to
achieve the non-uniform thread count
per node

> Dummy processes are launched

> Environment variables control how the
runtime pick the correct number of
processes on each node

GASNET_THREAD_MAP

3|8

1

10

2

5

11(121 6|17 | 0

GASNET_NUM_THREADS | 10

Tarek ElI-Ghazawi, GWU
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Relative Communication Overheard

 Experimental Results

¢ FT - all-to-all communication

Default

Clustering

M Splitting

B Splitting - Non Restricted
B PHAST

AN RN RN NN RN

A NN

A N RRNNNNNNNNNY

R Y

64

I I I

128 256 512
Number of Threads

1024

Initiating Thread

Data Affinity Thread

131072.0

117364.8

1048576

41750.4

TEB43.2

65536.0

52428.8

393216

26214.4

12107.2

RN NN

DN

A Y

64 128

256

|

512 1024
Number of Threads

PCL
The
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SEABHINGTEN

High Performance Computin
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 Experimental Results
MPI

¢ FT — all-to-all communication

Gain (%)

O R, N W b U1 O N

Clustering

@ Splitting

B Splitting - Non Restricted
B PHAST

ANNNNNR RN RN RN NN

AANNNNNNNN RN

RNNNNNNNNNNAY

R NN

64 128 256 512
Number of Threads

[EEY
o
N

i JIIIIIII 1T

Relative Communication Overhead

o
00

o o
H (o)}

o
N

=

o

Initiating Thread

O
1]
=
Q
c
=3

Data Affinity Thread

5.7678404M

5.7678402M

5.76784M

5.7678398M

5.7678396M

I IIIIIIIIIIIIIIIIIIIIII]'I

A NN

64

A N

TV IIIIIIIIIIIIII|]'I

128 256
Number of Threads

512 1024

Tarek El-Ghazawi, GWU
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Gain (%)

Data Affinity Thread 25002.7 I
22502.4

20002.1

 Experimental Results
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‘ Overview

Fundamental Challenges for Extreme Computing
_ocality and Hierarchical Locality
Programming Models

Hardware Support for Productive Locality
Exploitation- Address Remapping

Hierarchical Locality Exploitation
Concluding Remarks
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‘ Concluding Remarks

Due to energy and bandwidth constrains data
movements are becoming too expensive

Locality exploitation is an obvious target

Extreme scale architectures are becoming deeply
hierarchical giving rise to hierarchical locality

Hierarchical locality exploitation must be done
productively, leaving programmers with the
necessary min work to do

We can expect some programming paradigms to
provide explicit solutions

Locality-aware programming, hardware support and
run- t|me systems can play a bigger role while
26ping programmers productivity WASHINGTON
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 Follow up work in Hierarchical

Locality Exploitation

Use thread data-affinity from locality-aware program as a starting
point into a hierarchical locality exploitation system (PHLAME or
FLAME: Parallel Hierarchical Abstraction Model of Execution)

Examine best graph partitioning methods

Decentralize algorithms, and build in fast predictions to handle the

Exascale
Consider dynamic solutions

Consider unprofiled cases and collecting intelligence on runs for later

use and optimizations

Consider data dependent cases
Consider dynamic parallelism cases
Investigate hardware support
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