High Performance Computing Lab WASHINGTON DC

Hierarchical Locality and Parallel

Programming in the Extreme Scale Era

Tarek ElI-Ghazawi
The George Washington University

University of Southern California
September 29, 2016

‘ Overview

Fundamental Challenges for Extreme
Computing

_ocality and Hierarchical Locality
Programming Models

Hardware Support for Productive Locality
Exploitation- Address Remapping

Hierarchical Locality Exploitation
Concluding Remarks

ey WASHINGTON
DREISIY 5 UNIVERSITY

WASHINGTON, DC

HIF?*@L Tarek ElI-Ghazawi, GWU September 29, 2016 THE GEORGE

Top Ten Challenges for Exascale: Areas where
Research and advances are needed!

5735, Top Ten Exascale - Energy Efficiency v 4

| [/)7) Research Challenges

e Interconnect Technology
Memory Technology v

Scalable System Software
Programming Systems e
Data Management 4
Exascale Algorithms

Algorithms for Discovery, Design
& Decision

@EERGY oo o

goE ASCAC o. Resilience and Correctness
ubcommittee Report _ o ..
Feb 2014 10. Scientific Productivity v

THE GEORGE

Data movement and/or programming related et

WASHINGTON, DC

‘ Technological Challenges: Combined Bandwidth
and Energy Challenges for Exascale

Bandwidth density vs. system distance Energy vs. system distance

1'000'000 1000
€ 100000 - E‘n 100
£ g
"‘"G.. w
@ 10'000 £ 10
‘3 E S ==f==Electronic
[C) , =#=Electronic g =
= 1'000) 3L 1 «@=Photonic
B =@=Photonic s
— jd
c
2

10 ' 0.01
C('\\Q Q’sg’ Q& Q?& & Chip Edge PCB Rack System

9‘\‘}e

[Source: ASCAC 14]

Locality and data movement matter a lot, cost (energy and time)
rapidly increases with distance

Locality and data movement are critical even at short distance,
more so at far distances

PCIL. THE GEORGE
= WASHINGTON
@gnrmﬁ@?iﬁ UNIVERSITY

High Performanc

WASHINGTON, DC

Technological Challenges : (2) Bandwidth

Widening gap between available 1/0

Growing manycore bandwidth requirements

0.35

0.3

0.25

0.2

0.15

0.1

Bytes/FLOP

0.05

0

Xeon Phi
& (Knights Corner)———
NVIDIA
N\&V
A A N
K40 K80 .
Xeon Phi
(Knights
Landing)

2011.5 2012 2012.5 2013 2013.5 2014 2014.5 2015 2015.5

Intel Knights Landing: 500 GB/s => 1/6 Byte/FLOP

Year

and compute capability

_ 1 100.00
Byte/FLOP __________]
gap /
/ /’
‘); I:’ - é -
rz i I/O rate
4
,.
= 1 10.00
‘-
P
z/ Input/
P
gy Output
s _A Rate
i | (TByte/s)
2
7 f
g T 1.00
2005 2010 2015 2020 2025
Year

Ref: Miller, D. A, Proceedings of the IEEE, 2009.

+ Interconnect is not keeping up with the growth in compute capability
> Many apps require 1 Byte/FLOP off-chip, not possible in 10 TFLOPs chips and beyond

> Huge bandwidth density (GB/s/pm) needed on-chip due to large #cores in small area

PCIL.
The

BHINETON B Y

THE GEORGE
WASHINGTON
UNIVERSITY

WASHINGTON, DC

‘ Overview

Fundamental Challenges for Extreme Computing
Locality and Hierarchical Locality
Programming Models

Hardware Support for Productive Locality
Exploitation- Address Remapping

Hierarchical Locality Exploitation
Concluding Remarks

EPCC N . Tarek EI-Ghazawi, GWU September 29, 2016 THE GEORGE
The WASHINGTON
6 UNIVERSITY

WASHINGTON, DC

Architectural Challenges: Architectures are becoming
Deeply Hierarchical in Extreme Scale — Chips and
Systems

PCIL. THE GEORGE
The WASHINGTON
UNIVERSITY

WASHINGTON, DC

m‘etE{f{} Tarek ElI-Ghazawi, GWU 7

Architectural Challenges: Architectures are becoming
Deeply Hierarchical in Extreme Scale — Chips and
Systems

ei—

Local Copper Links

THE GEORGE
WASHINGTON
UNIVERSITY

WASHINGTON, DC

Architectural Challenges: Architectures are becoming
Deeply Hierarchical in Extreme Scale — Chips and Systems

Circﬁ‘ilg Board
Striplirie Links
(Ran k\il) T

Aries Chassis
boC = =] Level
L] L] L
Blade Blade Blade Blade Blade Blade
0 1 2 3 14 15

PCL. THE GEORGE
The WASHINGTON

%" Tarek El-Ghazawi, GWU 9 UNIVERSITY

WASHINGTON, DC

chitectural Challenges: Architectures are becoming
Deeply Hierarchical in Extreme Scale — Chips and Systems

Copper Cable Links

(Rank 2)
e
<

1”?"&.’1’.“‘!

Cabinet
} Level
Chassis hasi hassi Chassis
0 1 2 5
Circd‘i(Board
Stripline Links
(Rank 1)
mnnn - i
poer—— Aries: Chassis
PDC -~ LEVE'
Blade Blade Blade Blade Blade Blade
0 1 2 3 14 15
P THE GEORGE
JThe WASHINGTON
% Tarek El-Ghazawi, GWU 10 UNIVERSITY

WASHINGTON, DC

High Performance Computing Lab

Architectural Challenges: Architectures are becoming

Deeply Hierarchical ﬁﬂfﬂﬂ‘tt € 1ps and Systems
System
Level
2-Cabinet 2-Cabinet 2-Cabinet 2-Cabinet
Group 0 Group 1 Group 2 Group N

Copper Cable Links
(Rank 2)

Cabinet
Level

Cray
XC40

ol

0 1 2 5

Circii‘i!.j Board
Stripline Links
(Rank 1) B

hries Chassis
PDC Level
Blade Blade Blade Blade Blade Blade
0 1 2 3 14 15
PO THE GEORGE
Ihe WASHINGTON
%" Tarek El-Ghazawi, GWU 11 UNIVERSITY

High Performance Computing Lab

WASHINGTON, DC

Architectural Challenges: Architectures are becoming Deeply

Hierarchical in Extreme Scale — Chips and Systems
7 s

Optical Cable Links
(Rank 3) -

A

System
Level
2-Cabinet 2-Cabinet 2-Cabinet 2-Cabinet
Group 0 Group 1 Group 2 Group N
Copper Cable Links
(Rank 2)
Cabinet
Level

0 1 2 5

Circﬁ‘i!.j Board
Stripline Links
(Rank 1) B—

e o e Aries Chassis
PDC - Level
Blade Blade Blade Blade Blade Blade
0 1 2 3 14 15
PC THE GEORGE
JThe WASHINGTON
% Tarek El-Ghazawi, GWU 12 UNIVERSITY

High Performance Computing Lab

WASHINGTON, DC

‘ Overview

Fundamental Challenges for Extreme Computing
Locality and Hierarchical Locality
Programming Models

Hardware Support for Productive Locality
Exploitation- Address Remapping

Hierarchical Locality Exploitation
Concluding Remarks

ey WASHINGTON
DRIty 13 UNIVERSITY

WASHINGTON, DC

HIF?*@L Tarek ElI-Ghazawi, GWU September 29, 2016 THE GEORGE

Where are Programmming Models from That?

+ What is a programming model?

> An abstract virtual machine
> A view of data and execution
> The logical interface between architecture and applications

+ Why Programming Models?

> Decouple applications and architectures
+ Write applications that run effectively across architectures

+ Design new architectures that can effectively support legacy
applications

¢+ Programming Model Design Considerations

> Expose modern architectural features to exploit machine power
and improve performance

> Maintain Ease of Use

> Two previous points mean increase productivity!
PCL, THE GEORGE
JThe WASHINGTON

mmg{jg} Tarek ElI-Ghazawi, GWU 14 UNIVERSITY
WASHINGTON, DC

omputing Lab

‘ Current Programming Models and Locality

Awareness

Message Passing

Mocality Awareness

Shared Memory

Localit”wareness

O Process/Thread

Address Space

Partitioned Global
Address Space

Mocality Awareness

-Two-Sided -One-Sided -One-S_ideo_I
Communication Communication Communication
-Example MPI -Example OpenMP -Examples UPC and
Chapel
THE GEORGE

PCL,

JThe
gﬂm&? Tarek El-Ghazawi, GWU

WASHINGTON
15 UNIVERSITY

WASHINGTON, DC

PGAS Languages Include UPC,
Chapel and X10

UPC Language Specifications
V1.0

Tarek A. El-Ghazawi
George Washington Universtiy
tarek@Qgwu.edu

William W. Carlson Jesse M Draper
IDA Center for Computing Sciences

wwc@super.org jdraper@super.org

February 2001

PCIL. THE GEORGE
The WASHINGTON
UNIVERSITY

WASHINGTON, DC

ABIHINGTON BE Y

High Performance Computing Lab

‘ Overview

Fundamental Challenges for Extreme Computing
Locality and Hierarchical Locality
Programming Models

Hardware Support for Productive Locality
Exploitation- Address Remapping

Hierarchical Locality Exploitation
Concluding Remarks

- WASHINGTON
ARSIy 17 UNIVERSITY

H“?C;“if_/: Tarek ElI-Ghazawi, GWU September 29, 2016 THE GEORGE
JThe

WASHINGTON, DC

Memory Accesses in UPC- Shared Address

Translation Overheads

Measurement of the address

% 100% - 2
= 90% - space overheads
14 = © o o Set of micro-benchmarks
1 S < § 80% - measuring the different
< S 70% - aspects separately:
0 Q > m Network Time
_ g 60% - Address Translation
<3 o o QEJ 50% - M Address Incrementation
1 . |
E ’ S ¥ g 40% - ® Memory Access
O - Thread 0 Threadl Thread
4 0 R 20% - (Threads -1)
5 L 10% -
Shared
. 0% -
0 I I
e D X2
xZ D 4 4’5& \,0(' @\' Private O} Private 1 Private
R v o N ¢ 000 THREADS
Q&\ N Q/(Q Q‘
Type of access Type of access
PCL, THE GEORGE
JThe WASHINGTON

UNIVERSITY
WASHINGTON, DC

‘ Memory Access Costs in Chapel

Tested shared address access
costs in Chapel:

> Used Chapel Syntax to test

Local part of a distributed object,
un-optimized- Accessing local data
without saying local

Local Optimized — local part hand-
optimized by saying “local”
Local and Non-Distributed

Compiler optimization -> 2x faster

Both compiler and hand
optimization -> 70x faster

Compiler optimization affects
remote accesses as well

Both UPC and Chapel require *
unproductive!” hand tuning to
improve local shared accesses

Time (

1.6

Il Local Shared
I Local Shared Opt |}
3 Local

L

no_fast fast no_priv_fast
Compiler Options

Hl Global

no_fast fast no_priv_fast
Compiler Options

PCIL
JThe
gmwé‘gl Tarek ElI-Ghazawi, GWU

THE GEORGE
WASHINGTON
19 UNIVERSITY

WASHINGTON, DC

 Fast Address Translation for PGAS

+ Software solutions
> Hand tweaking — Non-productive

> Compiler optimizations - reduced arithmetic for some
straightforward cases

> Look up tables, full and reduced- Take memory! ICPP05
> TLB's ...

¢ Hardware solutions

> Create hardware that understands how to traverse the
PGAS memory model and support basic costly needs

> Avall it through instructions and leverage them by the
compiler

+ Some work for UPC, little for Chapel

PCIL. THE GEORGE
Ihe WASHINGTON
IVeISICY Tarek El-Ghazawi, GWU 20 UNIVERSITY

WASHINGTON, DC

= w be
nance C ting Lab

| Hardware Support for PGAS

Example Operations for Support in Hardware
> Shared address incrementing

> Load/store to/from a PGAS shared address

Address translation support: convert a shared address to a system virtual
address used to perform the access

> Locality tests for remote data

Can be used to tell whether to call the network subroutines, by e.g. testing
the affinity field in a work sharing construct

Availed as ISA extension
New instructions used directly by compiler

Current hardware support and instructions only support
address mapping

Future support for remote data accesses and various
types of synchronizations are of interest

PCL, THE GEORGE

= WASHINGTON
@ggim%ﬁl%’f? UNIVERSITY

WASHINGTON, DC

High Performanc

Hardware/Software Co-Design Platform
in a2 Nutshell

First prototype in FPGAs, supports small core count and apps

Second is primarily software, supports bigger core counts and
codes

Y

'

N\

N\

N T T T T T e 4 N
Benchmarking Benchmarking
Kernels UPC Code Out of the Box Kernels
L - <
New Instructions
BOe Inserted into Code Gen BIFE
] . 4
2\ I 7 N\
GasNet Ported on top of Gem5 | Ported on top of Leon3 GasNet
il oo \ J
5 b A Runtime System that | Extended with proposed f EJH 2
|4 5Gem5 recognizes and enforces | PGAS hardware support Leon3 Cores EE8 |
cem : H LY
& y the developed mapping | for shared addressing 9)
D £ / B
Workstation | : Cn \
Cluster - Future l TS B /)
- l \
Simulator Prototype | FPGA Prototype

THE GEORGE
WASHINGTON
UNIVERSITY

WASHINGTON, DC

Tarek El-Ghazawi, GWU 22

| PGAS Hardware Support Overview

= shared [4] int arrayA[32];
arrayA[10] = 5;

-

Thread 0! [0 2 3 \': l
16/17/18/19] Th=0| Ph=0 | Va=0x3Ff10 |.\

E i i Address « \

Thread 1 i 2158 7 | Pgas_ine_J Incrementation | Shared Pointer
E 20|21]22/23 | l Representation
i i {Th=2[Ph=2] va=0x3f18 —

Thread2: (8 9 101 l
| 2425 26 27T\,

e e 1) Address e
i i Translation/Store,”

el izslsofet] | .___®
i\ OxFFF01203F14 |« Regular pointer
L arrayA representation

THE GEORGE

PCIL.

JThe
L .
ﬁnmn%}fy Tarek ElI-Ghazawi, GWU
High Performance Computing Lab

23

WASHINGTON
UNIVERSITY

WASHINGTON, DC

| Early Results- NPB Kernels with HW Support
Gemb5 Alpha 21264

= C8 - Clase W
3 @ FT - Clasa W
' g Y p— : .
l LIl } 2 3 . ' .
E .
3 BT T VT VS ¥ S 1
g g 08
Wihout Maual Opéirizatcra, but with HW Witheut Menuel Optmizatiors hmmomﬁ_h
m'ﬁ.: o oL . Wihout Meu ol
M B 2 : 2 . - -
we 8 ¢ o Mumber of hreads
HI.III'I)II'GI'IIII'GICI
PCL. THE GEORGE
: WASHINGTON
ey UNIVERSITY

WASHINGTON, DC

‘ Overview

Fundamental Challenges for Extreme Computing
_ocality and Hierarchical Locality
Programming Models

Hardware Support for Productive Locality
Exploitation- Address Remapping

Hierarchical Locality Exploitation
Concluding Remarks

ey WASHINGTON
DRIty 25 UNIVERSITY

WASHINGTON, DC

HIF?*@L Tarek ElI-Ghazawi, GWU September 29, 2016 THE GEORGE

‘ Possible Solutions for Hierarchical

Locality Exploitation
Rewrite your code with low-level tricks to target
the underlying hierarchical architecture?
> Great performance, but not productive & non-portable

Extend programming models with hierarchical
syntax and semantics and ask programmers to
worry about all of those hardware details? (make
them hierarchical-locality-aware!)

> Portable but not productive

PCL, THE GEORGE
he WASHINGTON

DNISIEY Tarek ElI-Ghazawi, GWU 26 UNIVERSITY
I WASHINGTON, DC

Productive Division of Responsibilities: The
Programmer and the System

+ Programmer

> Use a locality-aware programming paradigm such as
MPI or a PGAS language

> Let programmer worry about the first-order locality,
thread-data affinity
+ System

> Understand your system hierarchy, costs associated
with data movements across levels

> Understand the program characteristics

> Derive locality exploitation on level-by-level basis via
Hierarchical Thread Grouping/partitioning

THE GEORGE

UNIVERSITY
nance C & Lab WASHINGTON, DC

[&) &
Jhe WASHINGTON
% Tarek ElI-Ghazawi, GWU 27

Motivations and Early Investigations

+ Proper placement will

>

Avoid unnecessary data
movement by exploiting
locality

Utilize the shared
memory and caches in
the neighborhood

Utilize the best
interconnect for the
underlying
communication

Yield a rising benefit as
the size of your system
increases! A must for
exascale!!

Effect of Exploiting Hier Locality (Read Access)

40
m35-40 § 35

m30-35 30

m 25-30 25

m 20-25 20
m15-20
15
m10-15
10
m5-10

Speedup from Proper Placem

mO0-5

Remote Comm (%)

Synthetic benchmark showing the gain of proper
with varying number of threads and percentage of
remote communication

High Perforr

PCIL.

Jhe

%@1 Tarek El-Ghazawi, GWU

mance Computing Lab

THE GEORGE
WASHINGTON
28 UNIVERSITY

WASHINGTON, DC

Motivations and Early Investigations

Put/Write Bandwidth — Cray XE6m

6
~5 ——Same Die
("2} R
>y ——Same Chip /
o4
= ——Same Node /
s 3 ——Remote
S
3
o
=2
@
1
O_
W O N & 0 OV - N F 0 OV N S 0 © ~ 7 O
— n O N N g — mm O N N o
— . — N N
MeéSage Size

+ The response of each level to communication
varies according to message sizes

> Closer is not always faster
+ Know and characterize your architecture!!

Tarek ElI-Ghazawi, GWU 29

THE GEORGE
WASHINGTON
UNIVERSITY

WASHINGTON, DC

PHLAME Methodology

(Parallel Hierarchical Abstraction Model of Execution)

Characterize the machine message costs at each level to generate
PHLAME description File (PDF)

Profile the application communication
Build a placement layout for the threads based on the above

Run the application witQ the layout built in the previous step
Communication PHLAME

Benchmarks Description File
- | Placement
b — N ANAX Algorithm Placement
ﬁg % () Fave Target
‘#!j_ | — " 'V‘ A Machine
Application
Instrumented Communication
Program _profile Program "
1_ -2
— | B :
PCIL, THE GEORGE

JThe WASHINGTON
gmwé‘fs? Tarek El-Ghazawi, GWU 30 UNIVERSITY

WASHINGTON, DC

j Characterizing the target machine

+ Message cost: total time for
message to be delivered

Msg(bytes)
Level

0.516956 0.665469 1.209482 1.986097 3.606203 7.593014

0.688468 1.038422 1.54703 2.772387 5.138746 10.86957

0.687853 1.033378 1.543448 2.770083 5.128205 10.85776

0.706414 1.05042 1.548707 2.77855 5.128205 11.02536

Example: time per message (ns) machine communication characterization
D =4 THE GEORGE

CL.
%‘ WASHINGTON
DIVErSIE Tarek El-Ghazawi, GWU 31 UNIVERSITY

High Performance Computing Lab WASHlNGTON, DC

e8®0,,

j Characterizing the application

Afflnlt¥ Thread
000000000 16 18 19 20
OOOEDOOODOED]wmm!

communication [

) IIIIIIIIIIIIIIII
IIIII

1186110060, 8

+ Instrument the application code :

> generate the communication
activity matrices

+ The message sizes range is
partitioned into bins
> Each bin corresponds to a sub range,
example: 1264, 64->128, ...

+ There are two communication ,,,
Msg

activity matrices for each bin ¢
> Average size

> Number of messages

1037846303,

i .= .=.= 8895825456'

. .-. 741318788.0 |

, IHHIIHH""II'-'I

e IIIIIII===IIIIII
............. 444791272.8

B IIIII SR T [

s EEEEEEEEEEEEEEEEEEEE
" AEEEENEESNEEETEE

" ANEEEEEEEEEEEEEn s

16

a EAN .
.=I

18 . S Bytes

Msg<64 | 64<MsgA128 : 128<Msg<256

593055030.4

Initiating Thread

. THE GEORGE
WASHINGTON

Tarek El-Ghazawi, GWU 32 UNIVERSITY
WASHINGTON, DC

Bins

3 Calculating Level Costs "

Msg<64 64<Msg<256 256<Msg<51 2

. , Avg |
+ Placement decisions require a Msg! | ! ; !
measurement of how threads Size s

fit together

Num of
Msgs

+ Repeat for each level [:

> For each pair of threads (i, j),
where i # j, calculate the cost of Msgs

their communication costs
-
LevelCost;;— Z(AngsgSizeijb X NumMsgs;j, X LevelBinCosty,) =
Level [
Where B is the number of bins costs
PCL. THE GEORGE
Jhe WASHINGTON

UNIVERSITY

mmg{gl Tarek ElI-Ghazawi, GWU 33
mance Computing Lab WASHINGTON, DC

' Hierarchical Thread Fitness Measure

_ Q Chassis
The fit measure shows T Blade

how twc_> threads benefit Q & 56_6 Cg%lode

or lose if scheduled on a
given level Theads ™
Cost

The fit measure is based
on the difference of

h
Ir;\szlsage costs at eac rr r r

Gain of placement at current level, loss due to placement at current level,
given current level is better given current level is worse
FIT Measure(i,j, L) = Z(Worse — Level) — (Level — Better)
PCL. THE GEORGE

WASHINGTON
gmwgl‘fs? Tarek El-Ghazawi, GWU 34 UNIVERSITY
Performance Computing Lab WASHINGTON, DC

' Hierarchical Thread Fitness Measure

The fit measure shows
how two threads benefit
or lose if scheduled on a
given level

The fit measure is based
on the difference of
message costs at each
level

Gain of placement at current level,

given current level is better

Q Chassis
\/ Blade

£ o o

EE BE E

loss due to placement at current level,
~given current level is worse

FIT Measure(i,j, L) = E (Worse — Level) — E (Level — Better)

PCL,

gmwgl‘fs? Tarek El-Ghazawi, GWU

THE GEORGE
WASHINGTON
35 UNIVERSITY

WASHINGTON, DC

' Hierarchical Thread Fitness Measure

The fit measure shows
how two threads benefit
or lose if scheduled on a
given level

The fit measure is based
on the difference of
message costs at each
level

Gain of placement at current level,

given current level is better

Q Chassis
\/ Blade

EE BE E

loss due to placement at current level,
~given current level is worse

FIT Measure(l,i,j) = E (Worse — Level) — E (Level — Better)

PCL,

gmw@l‘fs? Tarek El-Ghazawi, GWU

THE GEORGE
WASHINGTON
36 UNIVERSITY

WASHINGTON, DC

' Hierarchical Thread Fitness Measure

The fit measure shows f
how two threads benefit () Node
or lose if scheduled on a | ¥ cPU
given level

The fit measure is based
on the difference of

h
Ir;\szlsage costs at eac rr r r

Gain of placement at current level, loss due to placement at current level,
given current level is better given current level is worse

FIT Measure(i,j,L) = Z(Worse — Level) — z(Level — Better)

PCL, THE GEORGE

JThe WASHINGTON
gmwé‘f? Tarek El-Ghazawi, GWU 37 UNIVERSITY
Computing Lab WASHINGTON, DC

High Performanc

' Hierarchical Thread Fitness Measure

_ Q Chassis
The fit measure shows T Blade

how twc_> threads benefit OLC OLO C_O_O %Ode

or lose if scheduled on a

given level
The fit measureisbased " ~F ~ ~ T
on the difference of
message costs at each r
level
Gain of placement at current level, loss due to placement at current level,
given current level{\ better ~given current level is worse
FIT Measure(i,j, L) = Z(Worse — Level) — (Level — Better)

THE GEORGE
WASHINGTON

Tarek El-Ghazawi, GWU 38 UNIVERSITY
WASHINGTON, DC

‘ Mapping to Graph Theory

mapped into a graph
> Vertices represent the threads

> Edges represent interactions between threads

> HTF at each level are edge weights
+ Multiple weights per edge

Wij1r Wiz, Wijzs oo Wi

o »

PCL. THE GEORGE
The WASHINGTON
m\etg?n

nIversit Tarek ElI-Ghazawi, GWU 39 UNIVERSITY
1puting Lab WASHINGTON, DC

X mance Con

-
s
o~

 Hierarchical Graph Partitioning

+ Algorithms can be
> Bottom Up

¢ Form partitions at lower
levels first and recursively
group them at higher
levels

> Top Down

¢ Form partitions at upper
levels first and recursively
break them at lower levels

N

Abstract Machine:
Level,: Width = 4 (# of locales)
MaxLocaleSize = 4 (# of cores in each locale)

Tarek El-Ghazawi, GWU

THE GEORGE
WASHINGTON
40 UNIVERSITY

WASHINGTON, DC

‘ Testbed

+ Cray XE6mM/XK7m

> 24 cores per node
+ Two 12-core AMD Magny Cours

> Gemini Interconnect

¢ 2D Torus
+ UPC NPB Benchmark from GWU
> IS —Class C
> FT —Class C
» CG—-Class C
> MG —-Class C
> EP —-Class C

+ Heat Diffusion

PCIL.
The

m‘etgffn Tarek ElI-Ghazawi, GWU

High Performance Computing Lab

41

THE GEORGE
WASHINGTON
UNIVERSITY

WASHINGTON, DC

 Profiling the application
communication — Implementation

TAU is selected to profile UPC and MPI
programs

> (Generates activity matrix for each bin
Bins are not supported in TAU profiles

Modifications were made to TAU backend and
frontends to support bins

THE GEORGE
WASHINGTON
Tarek El-Ghazawi, GWU 42 UNIVERSITY

WASHINGTON, DC

 Customizing GASNet

The clustering algorithm usually
assigns unequal number of threads to
different nodes

The Cray Application Level Placement
Scheduler (ALPS) does not support
this feature

A modified GASNet Geminie Conduit
was used to trick the system to
achieve the non-uniform thread count
per node

> Dummy processes are launched

> Environment variables control how the
runtime pick the correct number of
processes on each node

GASNET_THREAD_MAP

3|8

1

10

2

5

11(121 6|17 | 0

GASNET_NUM_THREADS | 10

Tarek ElI-Ghazawi, GWU

43

THE GEORGE
WASHINGTON
UNIVERSITY

WASHINGTON, DC

Relative Communication Overheard

 Experimental Results

¢ FT - all-to-all communication

Default

Clustering

M Splitting

B Splitting - Non Restricted
B PHAST

AN RN RN NN RN

A NN

A N RRNNNNNNNNNY

R Y

64

I I I

128 256 512
Number of Threads

1024

Initiating Thread

Data Affinity Thread

131072.0

117364.8

1048576

41750.4

TEB43.2

65536.0

52428.8

393216

26214.4

12107.2

RN NN

DN

A Y

64 128

256

|

512 1024
Number of Threads

PCL
The
DREIEy

SEABHINGTEN

High Performance Computin

Tarek ElI-Ghazawi, GWU

44

THE GEORGE
WASHINGTON
UNIVERSITY

WASHINGTON, DC

 Experimental Results
MPI

¢ FT — all-to-all communication

Gain (%)

O R, N W b U1 O N

Clustering

@ Splitting

B Splitting - Non Restricted
B PHAST

ANNNNNR RN RN RN NN

AANNNNNNNN RN

RNNNNNNNNNNAY

R NN

64 128 256 512
Number of Threads

[EEY
o
N

i JIIIIIII 1T

Relative Communication Overhead

o
00

o o
H (o)}

o
N

=

o

Initiating Thread

O
1]
=
Q
c
=3

Data Affinity Thread

5.7678404M

5.7678402M

5.76784M

5.7678398M

5.7678396M

I IIIIIIIIIIIIIIIIIIIIII]'I

A NN

64

A N

TV IIIIIIIIIIIIII|]'I

128 256
Number of Threads

512 1024

Tarek El-Ghazawi, GWU

45

THE GEORGE
WASHINGTON
UNIVERSITY

WASHINGTON, DC

Gain (%)

Data Affinity Thread 25002.7 I
22502.4

20002.1

 Experimental Results

111111

| l PC -g 15001.6
E 111111
CG — Irregular memory)
access and communication E
@ Clustering ~ I EEEE
[Splitting
B Splitting - Non Restricted 5 .
B PHAST © Defautt -
<
100 5 1
& =
60 = = = 806 - =
o — o c — =
= = = 204 IANE =l
40 = = = e = =
= (B 4EH B So = =
20 = SN < "H = = 002 TAUIRE = =
H e OlE e = = IE =
O_WIZ EIE = ‘ EI EI % 0 A = = Eu Eu =
64 128 56 512 1024 o 64 128 256 512 1024
Number of Threads Number of Threads
PCIL THE GEORGE
The WASHINGTON
%&‘ Tarek EI-Ghazawi, GWU 46 UNIVERSITY

WASHINGTON, DC

High Performan

 Experimental Results

MPI

CG - Irregular memory

access and communication
Clustering

@ Splitting

B Splitting - Non Restricted
B PHAST

=
(92
HTHHNTITRE R

DONNNNNNNNY

10 .
s ol AL

64 128 256 512 1024
Number of Threads

Relative Communication Overhead

0.8

0.6

0.4

0.2

Initiating Thread

Data Affinity Thread

IZSO‘«'I

200M

150M

100M

50M

Default

AN NN NN

T IIIIIIIII[l

64

128 256

512 1024

Number of Threads

PCL,

JThe
gmwé‘fs? Tarek ElI-Ghazawi, GWU

Hig

47

THE GEORGE
WASHINGTON
UNIVERSITY

WASHINGTON, DC

e ® N ;W R W N Ee

[S e T T T e o T = S S S S S
[— T - T - T Y - 2 B e - T~ - - T Y (R - I 41 I S L VI]

w
r

CG — Non Restricted Explanation

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 3 ¢

] HEEN

HEEEEEE EEEEEEEEE
HENEEEFEEEEEEEEE
Hr<iEEL NN EEEEE

Initiating Thread

25002.7

Data Affinity Thread

22502.4

20002.1

17501.9

15001.6

12501.3

100011

75008

50005

2500.2

0.0

Bytes / op

PCL,

JThe
ﬁnw%%‘ Tarek El-Ghazawi, GWU

48

THE GEORGE
WASHINGTON
UNIVERSITY

WASHINGTON, DC

‘ Overview

Fundamental Challenges for Extreme Computing
_ocality and Hierarchical Locality
Programming Models

Hardware Support for Productive Locality
Exploitation- Address Remapping

Hierarchical Locality Exploitation
Concluding Remarks

ey WASHINGTON
BRCISIEY 49 UNIVERSITY

WASHINGTON, DC

HIF?*@L Tarek ElI-Ghazawi, GWU September 29, 2016 THE GEORGE

‘ Concluding Remarks

Due to energy and bandwidth constrains data
movements are becoming too expensive

Locality exploitation is an obvious target

Extreme scale architectures are becoming deeply
hierarchical giving rise to hierarchical locality

Hierarchical locality exploitation must be done
productively, leaving programmers with the
necessary min work to do

We can expect some programming paradigms to
provide explicit solutions

Locality-aware programming, hardware support and
run- t|me systems can play a bigger role while
26ping programmers productivity WASHINGTON

Tarek El-Ghazawi, GWU 50 UNIVERSITY
WASHINGTON, DC

‘ Publications

Ahmad Anbar, Olivier Serres, Engin Kayraklioglu, Abdel Hamid Badawy, and Tarek El-
Ghazawi, “Exploiting Hierarchical Locality in Deep Parallel Architectures”. ACM
Transactions on Architecture and Code Optimizations. Volume 13 Issue 2, June 2016 .

Olivier Serres, Abdullah Kayi, Ahmed Anbar and Tarek EIl-Ghazawi, “Enabling PGAS
Productivity with Hardware Support for Shared Address Mapping: A UPC Case Study”. ACM
Transactions on Architecture and Code Optimizations. Volume 12 Issue 4, January 2016.
Ahmad Anbar, Abdel-Hameed Badawy, Olivier Serres and Tarek EI-Ghazawi, “Where Should
The Threads Go? Leveraging Hierarchical Data Locality to Solve the Thread Affinity
Dilemma,” in Proc. 20th International Conference on Parallel and Distributed Systems
(ICPADS 2014). IEEE, Hsinchu, Taiwan, Dec 16-19, 2014.

Ahmad Anbar, Olivier Serres, Engin Kayraklioglu, Abdel-Hameed Badawy , Tarek EI-Ghazawi
PHLAME: Hierarchical Locality Exploitation Using the PGAS Model. IEEE International
Conference on Partitioned Global Address Space Programming Models (PGAS 2015),
Washington DC, September 18-20, 2015.

Olivier Serres, Abdullah Kayi, Ahmad Anbar, and Tarek EI-Ghazawi, “Enabling PGAS
productivity with hardware support for shared address mapping; a UPC case study,” in Proc.
16th IEEE International Conference on High Performance Computing and Communications,
August 20-22, 2014.

THE GEORGE
WASHINGTON

Tarek El-Ghazawi, GWU 51 UNIVERSITY
WASHINGTON, DC

 Follow up work in Hierarchical

Locality Exploitation

Use thread data-affinity from locality-aware program as a starting
point into a hierarchical locality exploitation system (PHLAME or
FLAME: Parallel Hierarchical Abstraction Model of Execution)

Examine best graph partitioning methods

Decentralize algorithms, and build in fast predictions to handle the

Exascale
Consider dynamic solutions

Consider unprofiled cases and collecting intelligence on runs for later

use and optimizations

Consider data dependent cases
Consider dynamic parallelism cases
Investigate hardware support

Tarek ElI-Ghazawi, GWU

52

THE GEORGE
WASHINGTON
UNIVERSITY

WASHINGTON, DC

