
Hierarchical Locality and Parallel
Programming in the Extreme Scale Era

Tarek El-Ghazawi
The George Washington University

University of Southern California
September 29, 2016

Tarek El-Ghazawi, GWU September 29, 2016

Overview

2

 Fundamental Challenges for Extreme
Computing

 Locality and Hierarchical Locality
 Programming Models
 Hardware Support for Productive Locality

Exploitation- Address Remapping
 Hierarchical Locality Exploitation
 Concluding Remarks

Top Ten Challenges for Exascale: Areas where
Research and advances are needed!

1. Energy Efficiency
2. Interconnect Technology
3. Memory Technology
4. Scalable System Software
5. Programming Systems
6. Data Management
7. Exascale Algorithms
8. Algorithms for Discovery, Design

& Decision
9. Resilience and Correctness
10. Scientific Productivity

DoE ASCAC
Subcommittee Report
Feb 2014

Data movement and/or programming related

Technological Challenges: Combined Bandwidth
and Energy Challenges for Exascale

 Locality and data movement matter a lot, cost (energy and time)
rapidly increases with distance

 Locality and data movement are critical even at short distance,
more so at far distances

Bandwidth density vs. system distance Energy vs. system distance

[Source: ASCAC 14]

Technological Challenges : (2) Bandwidth

 Interconnect is not keeping up with the growth in compute capability
 Many apps require 1 Byte/FLOP off-chip, not possible in 10 TFLOPs chips and beyond

Intel Knights Landing: 500 GB/s => 1/6 Byte/FLOP
 Huge bandwidth density (GB/s/μm) needed on-chip due to large #cores in small area

Ref: Miller, D. A, Proceedings of the IEEE, 2009.

Growing manycore bandwidth requirements Widening gap between available I/O
and compute capability

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

2011.5 2012 2012.5 2013 2013.5 2014 2014.5 2015 2015.5

B
yt

es
/F

LO
P

Year

Xeon Phi
(Knights Corner)

Xeon Phi
(Knights
Landing)

NVIDIA
K20

K40 K80

Tarek El-Ghazawi, GWU September 29, 2016

Overview

6

 Fundamental Challenges for Extreme Computing
 Locality and Hierarchical Locality
 Programming Models
 Hardware Support for Productive Locality

Exploitation- Address Remapping
 Hierarchical Locality Exploitation
 Concluding Remarks

Tarek El-Ghazawi, GWU

Architectural Challenges: Architectures are becoming
Deeply Hierarchical in Extreme Scale – Chips and
Systems

7

Tarek El-Ghazawi, GWU

Architectural Challenges: Architectures are becoming
Deeply Hierarchical in Extreme Scale – Chips and
Systems

8

Tarek El-Ghazawi, GWU

Architectural Challenges: Architectures are becoming
Deeply Hierarchical in Extreme Scale – Chips and Systems

9

Tarek El-Ghazawi, GWU

Architectural Challenges: Architectures are becoming
Deeply Hierarchical in Extreme Scale – Chips and Systems

10

Tarek El-Ghazawi, GWU

Architectural Challenges: Architectures are becoming
Deeply Hierarchical in Extreme Scale – Chips and Systems

11

Cray
XC40

Tarek El-Ghazawi, GWU

Architectural Challenges: Architectures are becoming Deeply
Hierarchical in Extreme Scale – Chips and Systems

12

Cray
XC40

 TTT TILE64

Tile64

Tarek El-Ghazawi, GWU September 29, 2016

Overview

13

 Fundamental Challenges for Extreme Computing
 Locality and Hierarchical Locality
 Programming Models
 Hardware Support for Productive Locality

Exploitation- Address Remapping
 Hierarchical Locality Exploitation
 Concluding Remarks

Tarek El-Ghazawi, GWU

Where are Programming Models from That?

14

 What is a programming model?
 An abstract virtual machine
 A view of data and execution
 The logical interface between architecture and applications

 Why Programming Models?
 Decouple applications and architectures

 Write applications that run effectively across architectures
 Design new architectures that can effectively support legacy

applications

 Programming Model Design Considerations
 Expose modern architectural features to exploit machine power

and improve performance
 Maintain Ease of Use
 Two previous points mean increase productivity!

Tarek El-Ghazawi, GWU

Current Programming Models and Locality
Awareness

15

Process/Thread

Address Space

…

Partitioned Global
Address Space

Locality Awareness
-One-Sided

Communication
-Examples UPC and

Chapel

…

Shared Memory

Locality Awareness
-One-Sided

Communication
-Example OpenMP

×

…
Message Passing

Locality Awareness
-Two-Sided

Communication
-Example MPI

16

PGAS Languages Include UPC,
Chapel and X10

Tarek El-Ghazawi, GWU September 29, 2016

Overview

17

 Fundamental Challenges for Extreme Computing
 Locality and Hierarchical Locality
 Programming Models
 Hardware Support for Productive Locality

Exploitation- Address Remapping
 Hierarchical Locality Exploitation
 Concluding Remarks

1.
42

1.
42

1.
42

4.
2

4.
2

4.
53 4.
53

17
36
.8

0

2

4

6

8

10

12

14

Ti
m
e
(n
s)

Type of access

Network Time
Address Translation
Address Incrementation
Memory Access

5.
25

 G
B

/s

73
4

M
B

/s

4.
25

 M
B

/s

Memory Accesses in UPC- Shared Address
Translation Overheads

 Measurement of the address
space overheads
 Set of micro-benchmarks

measuring the different
aspects separately:

0%
10%
20%

30%
40%
50%
60%
70%
80%
90%
100%

%
 ti
m
e
in
 m

em
or
y
ac
ce
ss

Type of access

Shared

Thread 0 Thread1 Thread
(Threads -1)

Private 0 Private 1 Private
THREADS-1

Tarek El-Ghazawi, GWU

Memory Access Costs in Chapel

19

 Tested shared address access
costs in Chapel:
 Used Chapel Syntax to test

 Local part of a distributed object,
un-optimized- Accessing local data
without saying local

 Local Optimized – local part hand-
optimized by saying “local”

 Local and Non-Distributed

 Compiler optimization -> 2x faster
 Both compiler and hand

optimization -> 70x faster
 Compiler optimization affects

remote accesses as well
 Both UPC and Chapel require “

unproductive!” hand tuning to
improve local shared accesses

Tarek El-Ghazawi, GWU

Fast Address Translation for PGAS

20

 Software solutions
 Hand tweaking – Non-productive
 Compiler optimizations - reduced arithmetic for some

straightforward cases
 Look up tables, full and reduced- Take memory! ICPP05
 TLB's

 Hardware solutions
 Create hardware that understands how to traverse the

PGAS memory model and support basic costly needs
 Avail it through instructions and leverage them by the

compiler
 Some work for UPC, little for Chapel

Hardware Support for PGAS
 Example Operations for Support in Hardware

 Shared address incrementing
 Load/store to/from a PGAS shared address

 Address translation support: convert a shared address to a system virtual
address used to perform the access

 Locality tests for remote data
 Can be used to tell whether to call the network subroutines, by e.g. testing

the affinity field in a work sharing construct

 Availed as ISA extension
 New instructions used directly by compiler
 Current hardware support and instructions only support

address mapping
 Future support for remote data accesses and various

types of synchronizations are of interest

Tarek El-Ghazawi, GWU

Hardware/Software Co-Design Platform
in a Nutshell

22

 First prototype in FPGAs, supports small core count and apps
 Second is primarily software, supports bigger core counts and

codes

GasNet

BUPC

Benchmarking
Kernels

Gem5

Ported on top of Gem5

New Instructions
Inserted into Code Gen

UPC Code Out of the Box

A Runtime System that
recognizes and enforces
the developed mapping

Ported on top of Leon3 GasNet

BUPC

Benchmarking
Kernels

Virtex-6 FPGA

Extended with proposed
PGAS hardware support

for shared addressing
Leon3 Cores

Workstation
Cluster - Future

Tarek El-Ghazawi, GWU

PGAS Hardware Support Overview

23

 shared [4] int arrayA[32];
arrayA[10] = 5;

0 1 2 3
16 17 18 19

4 5 6 7
20 21 22 23

8 9 10 11
24 25 26 27

12 13 14 15
28 29 30 31

Thread 0

Thread 1

Thread 2

Thread 3

arrayA

Address
Incrementation

Th=0 Ph=0 Va=0x3f10

Th=2 Ph=2 Va=0x3f18

Address
Translation/Store

0xfff01203f14

pgas_inc_{x}

pgas_st_{x}

Regular pointer
representation

Shared Pointer
Representation

Early Results- NPB Kernels with HW Support
Gem5 Alpha 21264

Tarek El-Ghazawi, GWU September 29, 2016

Overview

25

 Fundamental Challenges for Extreme Computing
 Locality and Hierarchical Locality
 Programming Models
 Hardware Support for Productive Locality

Exploitation- Address Remapping
 Hierarchical Locality Exploitation
 Concluding Remarks

Tarek El-Ghazawi, GWU

Possible Solutions for Hierarchical
Locality Exploitation

26

 Rewrite your code with low-level tricks to target
the underlying hierarchical architecture?
 Great performance, but not productive & non-portable

 Extend programming models with hierarchical
syntax and semantics and ask programmers to
worry about all of those hardware details? (make
them hierarchical-locality-aware!)
 Portable but not productive

Tarek El-Ghazawi, GWU

Productive Division of Responsibilities: The
Programmer and the System

27

 Programmer
 Use a locality-aware programming paradigm such as

MPI or a PGAS language
 Let programmer worry about the first-order locality,

thread-data affinity
 System

 Understand your system hierarchy, costs associated
with data movements across levels

 Understand the program characteristics
 Derive locality exploitation on level-by-level basis via

Hierarchical Thread Grouping/partitioning

Tarek El-Ghazawi, GWU

Motivations and Early Investigations

28

Synthetic benchmark showing the gain of proper
with varying number of threads and percentage of
remote communication

 Proper placement will
 Avoid unnecessary data

movement by exploiting
locality

 Utilize the shared
memory and caches in
the neighborhood

 Utilize the best
interconnect for the
underlying
communication

 Yield a rising benefit as
the size of your system
increases! A must for
exascale!!

24

96

384

1008

0

5

10

15

20

25

30

35

40

10 20 30 40 50 60 70 80 90

Sp
ee
du

p
fr
om

 P
ro
pe

r P
la
ce
m
en

t

Remote Comm (%)

Effect of Exploiting Hier Locality (Read Access)

35‐40

30‐35

25‐30

20‐25

15‐20

10‐15

5‐10

0‐5

Tarek El-Ghazawi, GWU

Motivations and Early Investigations

29

 The response of each level to communication
varies according to message sizes
 Closer is not always faster

 Know and characterize your architecture!!

0

1

2

3

4

5

6

8
B

16
 B

32
 B

64
 B

12
8
B

25
6
B

51
2
B 1
K

2
K

4
K

8
K

16
 K

32
 K

64
 K

12
8
K

25
6
K

51
2
K

1
M

2
M

Ba
nd

w
id
th
 (G

B/
s)

Message Size

Put/Write Bandwidth – Cray XE6m

Self
Same Die
Same Chip
Same Node
Remote

Tarek El-Ghazawi, GWU

1

PHLAME Methodology
(Parallel Hierarchical Abstraction Model of Execution)

30

Program

Application
Communication

profile
Instrumented

Program

Communication
Benchmarks

PHLAME
Description File

Placement
Placement
Algorithm

Target
Machine

1. Characterize the machine message costs at each level to generate
PHLAME description File (PDF)

2. Profile the application communication
3. Build a placement layout for the threads based on the above
4. Run the application with the layout built in the previous step

2

3
4

Tarek El-Ghazawi, GWU

Characterizing the target machine

31

 Message cost: total time for
message to be delivered

Msg(bytes)
Level 1 8 16 32 64 128 …

1 0.516956 0.665469 1.209482 1.986097 3.606203 7.593014

2 0.688468 1.038422 1.54703 2.772387 5.138746 10.86957

3 0.687853 1.033378 1.543448 2.770083 5.128205 10.85776

4 0.706414 1.05042 1.548707 2.77855 5.128205 11.02536

Example: time per message (ns) machine communication characterization

1

Tarek El-Ghazawi, GWU

Characterizing the application
communication

32

 Instrument the application code
 generate the communication

activity matrices

 The message sizes range is
partitioned into bins
 Each bin corresponds to a sub range,

example: 164, 64128, …

 There are two communication
activity matrices for each bin
 Average size
 Number of messages

0 1 2 3

0

1

2

3

0 1 2 3

0

1

2

3

0 1 2 3

0

1

2

3

0 1 2 3

0

1

2

3

0 1 2 3

0

1

2

3

0 1 2 3

0

1

2

3

Msg<64 64≤Msg<128 128≤Msg<256

Avg
Msg
Size

Num
of

Msgs

Data Affinity Thread

In
iti

at
in

g
Th

re
ad

…

2

Tarek El-Ghazawi, GWU

Calculating Level Costs

33

 Placement decisions require a
measurement of how threads
fit together

 Repeat for each level ݈	:
 For each pair of threads (݅, ݆),

where ݅ ് ݆, calculate the cost of
their communication

Where B is the number of bins

௜௝௕݁ݖ݅ܵ݃ݏܯ݃ݒܣ௟௜௝ୀ෍ሺݐݏ݋ܥ݈݁ݒ݁ܮ ൈ ௜௝௕ݏ݃ݏܯ݉ݑܰ ൈ ௟௕ሻݐݏ݋ܥ݊݅ܤ݈݁ݒ݁ܮ
஻

௕ୀଵ

0 1 2 3

0

1

2

3

0 1 2 3

0

1

2

3

0 1 2 3

0

1

2

3

0 1 2 3

0

1

2

3

0 1 2 3

0

1

2

3

0 1 2 3

0

1

2

3

Msg
Level 8 16 32 64 128 256 …

Die 0.516956 0.665469 1.209482 1.986097 3.606203 7.593014

Chip 0.688468 1.038422 1.54703 2.772387 5.138746 10.86957

Node 0.687853 1.033378 1.543448 2.770083 5.128205 10.85776

Remote 0.706414 1.05042 1.548707 2.77855 5.128205 11.02536

Msg<64 64≤Msg<256 256≤Msg<512

Avg
Msg
Size

Num of
Msgs

Msgs
costs

0 1 2 3

0

1

2

3

⊙ ⊙ ⊙

Level ݈
costs

=

…

…

Bins …3

Tarek El-Ghazawi, GWU 34

݁ݎݑݏܽ݁ܯ	ܶܫܨ	 ݅, ݆, ܮ ൌ෍ ݁ݏݎ݋ܹ െ ݈݁ݒ݁ܮ െ	෍ ݈݁ݒ݁ܮ െ ݎ݁ݐݐ݁ܤ

Hierarchical Thread Fitness Measure

0 1 2 3

0

1

2

3

0 1 2 3

0

1

2

3

 The fit measure shows
how two threads benefit
or lose if scheduled on a
given level

 The fit measure is based
on the difference of
message costs at each
level

Cost

݊݅ܽܩ ݂݋ placement		at ݐ݊݁ݎݎݑܿ ,݈݁ݒ݈݁
given	ܿݐ݊݁ݎݎݑ ݈݁ݒ݈݁ ݏ݅ ݎ݁ݐݐܾ݁

ݏݏ݋݈ ݁ݑ݀ ݋ݐ ݐ݈݊݁݉݁ܿܽ݌ ݐܽ ݐ݊݁ݎݎݑܿ ,݈݁ݒ݈݁
݊݁ݒ݅݃ ݐ݊݁ݎݎݑܿ ݈݁ݒ݈݁ ݏ݅ ݁ݏݎ݋ݓ

CPU

Node

Blade

Chassis

Threads

0 1 2 3

0

1

2

3

0 1 2 3

0

1

2

3

Tarek El-Ghazawi, GWU 35

,ሺ݅݁ݎݑݏܽ݁ܯ	ܶܫܨ ݆, ሻܮ ൌ෍ ݁ݏݎ݋ܹ െ ݈݁ݒ݁ܮ െ	෍ ݈݁ݒ݁ܮ െ ݎ݁ݐݐ݁ܤ 	

Hierarchical Thread Fitness Measure

0 1 2 3

0

1

2

3

0 1 2 3

0

1

2

3

 The fit measure shows
how two threads benefit
or lose if scheduled on a
given level

 The fit measure is based
on the difference of
message costs at each
level

݊݅ܽܩ ݂݋ placement		at ݐ݊݁ݎݎݑܿ ,݈݁ݒ݈݁
given	ܿݐ݊݁ݎݎݑ ݈݁ݒ݈݁ ݏ݅ ݎ݁ݐݐܾ݁

ݏݏ݋݈ ݁ݑ݀ ݋ݐ ݐ݈݊݁݉݁ܿܽ݌ ݐܽ ݐ݊݁ݎݎݑܿ ,݈݁ݒ݈݁
݊݁ݒ݅݃ ݐ݊݁ݎݎݑܿ ݈݁ݒ݈݁ ݏ݅ ݁ݏݎ݋ݓ

CPU

Node

Blade

Chassis

0 1 2 3

0

1

2

3

0 1 2 3

0

1

2

3

Tarek El-Ghazawi, GWU 36

0 1 2 3

0

1

2

3

,ሺ݈݁ݎݑݏܽ݁ܯ	ܶܫܨ ݅, ݆ሻ ൌ ෍ ݁ݏݎ݋ܹ െ ݈݁ݒ݁ܮ െ	෍ ݈݁ݒ݁ܮ െ ݎ݁ݐݐ݁ܤ 	

Hierarchical Thread Fitness Measure

0 1 2 3

0

1

2

3

0 1 2 3

0

1

2

3

0 1 2 3

0

1

2

3

 The fit measure shows
how two threads benefit
or lose if scheduled on a
given level

 The fit measure is based
on the difference of
message costs at each
level

݊݅ܽܩ ݂݋ placement		at ݐ݊݁ݎݎݑܿ ,݈݁ݒ݈݁
given	ܿݐ݊݁ݎݎݑ ݈݁ݒ݈݁ ݏ݅ ݎ݁ݐݐܾ݁

ݏݏ݋݈ ݁ݑ݀ ݋ݐ ݐ݈݊݁݉݁ܿܽ݌ ݐܽ ݐ݊݁ݎݎݑܿ ,݈݁ݒ݈݁
݊݁ݒ݅݃ ݐ݊݁ݎݎݑܿ ݈݁ݒ݈݁ ݏ݅ ݁ݏݎ݋ݓ

CPU

Node

Blade

Chassis

Tarek El-Ghazawi, GWU 37

݁ݎݑݏܽ݁ܯ	ܶܫܨ ݅, ݆, ܮ ൌ෍ ݁ݏݎ݋ܹ െ ݈݁ݒ݁ܮ െ	෍ ݈݁ݒ݁ܮ െ ݎ݁ݐݐ݁ܤ

Hierarchical Thread Fitness Measure

0 1 2 3

0

1

2

3

0 1 2 3

0

1

2

3

 The fit measure shows
how two threads benefit
or lose if scheduled on a
given level

 The fit measure is based
on the difference of
message costs at each
level

݊݅ܽܩ ݂݋ placement		at ݐ݊݁ݎݎݑܿ ,݈݁ݒ݈݁
given	ܿݐ݊݁ݎݎݑ ݈݁ݒ݈݁ ݏ݅ ݎ݁ݐݐܾ݁

ݏݏ݋݈ ݁ݑ݀ ݋ݐ ݐ݈݊݁݉݁ܿܽ݌ ݐܽ ݐ݊݁ݎݎݑܿ ,݈݁ݒ݈݁
݊݁ݒ݅݃ ݐ݊݁ݎݎݑܿ ݈݁ݒ݈݁ ݏ݅ ݁ݏݎ݋ݓ

0 1 2 3

0

1

2

3

CPU

Node

Blade

Chassis

0 1 2 3

0

1

2

3

Tarek El-Ghazawi, GWU 38

,ሺ݅݁ݎݑݏܽ݁ܯ	ܶܫܨ ݆, ሻܮ ൌ෍ ݁ݏݎ݋ܹ െ ݈݁ݒ݁ܮ െ	෍ ݈݁ݒ݁ܮ െ ݎ݁ݐݐ݁ܤ

Hierarchical Thread Fitness Measure

0 1 2 3

0

1

2

3

0 1 2 3

0

1

2

3

 The fit measure shows
how two threads benefit
or lose if scheduled on a
given level

 The fit measure is based
on the difference of
message costs at each
level

݊݅ܽܩ ݂݋ placement		at ݐ݊݁ݎݎݑܿ ,݈݁ݒ݈݁
given	ܿݐ݊݁ݎݎݑ ݈݁ݒ݈݁ ݏ݅ ݎ݁ݐݐܾ݁

ݏݏ݋݈ ݁ݑ݀ ݋ݐ ݐ݈݊݁݉݁ܿܽ݌ ݐܽ ݐ݊݁ݎݎݑܿ ,݈݁ݒ݈݁
݊݁ݒ݅݃ ݐ݊݁ݎݎݑܿ ݈݁ݒ݈݁ ݏ݅ ݁ݏݎ݋ݓ

0 1 2 3

0

1

2

3

CPU

Node

Blade

Chassis

0 1 2 3

0

1

2

3

Tarek El-Ghazawi, GWU

Mapping to Graph Theory

39

 The application communication pattern can be
mapped into a graph
 Vertices represent the threads

 Edges represent interactions between threads

 HTF at each level are edge weights
 Multiple weights per edge

i j

wij1, wij2, wij3, … wijL

Tarek El-Ghazawi, GWU

Hierarchical Graph Partitioning

40

Algorithms can be
 Bottom Up

 Form partitions at lower
levels first and recursively
group them at higher
levels

 Top Down
 Form partitions at upper

levels first and recursively
break them at lower levels

Abstract Machine:
Level1: Width = 4 (# of locales)

MaxLocaleSize = 4 (# of cores in each locale)

Tarek El-Ghazawi, GWU

Testbed

41

 Cray XE6m/XK7m
 24 cores per node

 Two 12-core AMD Magny Cours
 Gemini Interconnect

 2D Torus

 UPC NPB Benchmark from GWU
 IS – Class C
 FT – Class C
 CG – Class C
 MG – Class C
 EP – Class C

 Heat Diffusion

Tarek El-Ghazawi, GWU

Profiling the application
communication – Implementation

42

 TAU is selected to profile UPC and MPI
programs
 Generates activity matrix for each bin

 Bins are not supported in TAU profiles

 Modifications were made to TAU backend and
frontends to support bins

Tarek El-Ghazawi, GWU

Customizing GASNet

43

 The clustering algorithm usually
assigns unequal number of threads to
different nodes

 The Cray Application Level Placement
Scheduler (ALPS) does not support
this feature

 A modified GASNet Geminie Conduit
was used to trick the system to
achieve the non-uniform thread count
per node
 Dummy processes are launched
 Environment variables control how the

runtime pick the correct number of
processes on each node

3 8 1 10 2 5 11 12 6 7 0 9

8 3

1

2

5

6 9

07

GASNET_THREAD_MAP

GASNET_NUM_THREADS 10

Tarek El-Ghazawi, GWU

Experimental Results

44

 FT – all-to-all communication

0

2

4

6

8

10

12

64 128 256 512 1024

G
ai
n
(%

)

Number of Threads

0

0.2

0.4

0.6

0.8

1

64 128 256 512 1024Re
la
tiv
e
Co

m
m
un

ic
at
io
n
O
ve
rh
ea
rd

Number of Threads

Clustering
Splitting
Splitting ‐ Non Restricted
PHAST

Default

Tarek El-Ghazawi, GWU

Experimental Results
MPI

45

 FT – all-to-all communication

0
1
2
3
4
5
6
7
8

64 128 256 512 1024

G
ai
n
(%

)

Number of Threads

Clustering
Splitting
Splitting ‐ Non Restricted
PHAST

0

0.2

0.4

0.6

0.8

1

64 128 256 512 1024
Number of Threads

Default

Re
la
tiv

e
Co

m
m
un

ic
at
io
n
O
ve
rh
ea
d

Tarek El-Ghazawi, GWU

Experimental Results
UPC

46

 CG – Irregular memory
access and communication

0

20

40

60

80

100

64 128 256 512 1024

G
ai
n
(%

)

Number of Threads

Clustering
Splitting
Splitting ‐ Non Restricted
PHAST

0

0.2

0.4

0.6

0.8

1

64 128 256 512 1024
Number of Threads

Default

Re
la
tiv

e
Co

m
m
un

ic
at
io
n
O
ve
rh
ea
d

Tarek El-Ghazawi, GWU

Experimental Results
MPI

47

 CG – Irregular memory
access and communication

0
5
10
15
20
25
30
35
40
45

64 128 256 512 1024

G
ai
n
(%

)

Number of Threads

Clustering
Splitting
Splitting ‐ Non Restricted
PHAST

0

0.2

0.4

0.6

0.8

1

64 128 256 512 1024
Number of Threads

Default

Re
la
tiv

e
Co

m
m
un

ic
at
io
n
O
ve
rh
ea
d

Tarek El-Ghazawi, GWU

CG – Non Restricted Explanation

48

Node 0

Node 1

Remote

Remote

Tarek El-Ghazawi, GWU September 29, 2016

Overview

49

 Fundamental Challenges for Extreme Computing
 Locality and Hierarchical Locality
 Programming Models
 Hardware Support for Productive Locality

Exploitation- Address Remapping
 Hierarchical Locality Exploitation
 Concluding Remarks

Tarek El-Ghazawi, GWU

Concluding Remarks

50

 Due to energy and bandwidth constrains data
movements are becoming too expensive

 Locality exploitation is an obvious target
 Extreme scale architectures are becoming deeply

hierarchical giving rise to hierarchical locality
 Hierarchical locality exploitation must be done

productively, leaving programmers with the
necessary min work to do

 We can expect some programming paradigms to
provide explicit solutions

 Locality-aware programming, hardware support and
run-time systems can play a bigger role while
keeping programmers productivity

Tarek El-Ghazawi, GWU

Publications

51

 Ahmad Anbar, Olivier Serres, Engin Kayraklioglu, Abdel Hamid Badawy, and Tarek El-
Ghazawi, “Exploiting Hierarchical Locality in Deep Parallel Architectures”. ACM
Transactions on Architecture and Code Optimizations. Volume 13 Issue 2, June 2016 .

 Olivier Serres, Abdullah Kayi, Ahmed Anbar and Tarek El-Ghazawi, “Enabling PGAS
Productivity with Hardware Support for Shared Address Mapping: A UPC Case Study”. ACM
Transactions on Architecture and Code Optimizations. Volume 12 Issue 4, January 2016.

 Ahmad Anbar, Abdel-Hameed Badawy, Olivier Serres and Tarek El-Ghazawi, “Where Should
The Threads Go? Leveraging Hierarchical Data Locality to Solve the Thread Affinity
Dilemma,” in Proc. 20th International Conference on Parallel and Distributed Systems
(ICPADS 2014). IEEE, Hsinchu, Taiwan, Dec 16-19, 2014.

 Ahmad Anbar, Olivier Serres, Engin Kayraklioglu, Abdel-Hameed Badawy , Tarek El-Ghazawi
PHLAME: Hierarchical Locality Exploitation Using the PGAS Model. IEEE International
Conference on Partitioned Global Address Space Programming Models (PGAS 2015),
Washington DC, September 18-20, 2015.

3. Olivier Serres, Abdullah Kayi, Ahmad Anbar, and Tarek El-Ghazawi, “Enabling PGAS
productivity with hardware support for shared address mapping; a UPC case study,” in Proc.
16th IEEE International Conference on High Performance Computing and Communications,
August 20-22, 2014.

Tarek El-Ghazawi, GWU

Follow up work in Hierarchical
Locality Exploitation

52

 Use thread data-affinity from locality-aware program as a starting
point into a hierarchical locality exploitation system (PHLAME or
FLAME: Parallel Hierarchical Abstraction Model of Execution)

 Examine best graph partitioning methods
 Decentralize algorithms, and build in fast predictions to handle the

Exascale
 Consider dynamic solutions
 Consider unprofiled cases and collecting intelligence on runs for later

use and optimizations
 Consider data dependent cases
 Consider dynamic parallelism cases
 Investigate hardware support

