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Abstract

In multicores, performance-critical synchronization is in-
creasingly performed in a lock-free manner using atomic in-
structions such as CAS or LL/SC. However, when many pro-
cessors synchronize on the same variable, performance can
still degrade significantly. Contending writes get serialized,
creating a non-scalable condition. Past proposals that build
hardware queues of synchronizing processors do not funda-
mentally solve this problem—at best, they help to efficiently
serialize the contending writes.

This paper proposes a novel architecture that breaks the
serialization of hardware queues and enables the queued
processors to perform lock-free synchronization in parallel.
The architecture, called CASPAR, is able to (1) execute the
CASes in the queued-up processors in parallel through eager
forwarding of expected values, and (2) validate the CASes
in parallel and dequeue groups of processors at a time. The
result is highly-scalable synchronization. We evaluate CAS-
PAR with simulations of a 64-core chip. Compared to exist-
ing proposals with hardware queues, CASPAR improves the
throughput of kernels by 32% on average, and reduces the
execution time of the sections considered in lock-free ver-
sions of applications by 47% on average. This makes these
sections 2.5x faster than in the original applications.
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1. Introduction
The arrival of large multicores such as Intel’s Xeon Phi [27]
provides renewed impetus to develop highly-threaded appli-
cations that share data in a fine-grained manner. Examples
of such applications can be found in the traditional domains
of numerical and database [15, 63] computing, as well as in
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the runtimes of emerging programming frameworks, such as
Galois [50] for graph analytics, and those of Google’s Go [1]
and Mozilla’s Rust [45] languages.

Fine-grained applications require efficient synchroniza-
tion to manage shared data structures. For highest perfor-
mance, they often employ lock-free synchronization [25],
which avoids the overheads of using locks [13, 15, 19, 35,
47, 59, 61, 63]. Lock-free synchronization forgoes locking
by directly manipulating the data structures using atomic
instructions such as compare-and-swap (CAS) or load-
linked/store-conditional (LL/SC). There are several pop-
ular lock-free versions of basic data structures, such as
queues [26, 40], stacks [23], LRU caches [9], and priority
queues [6]. They provide fast operations on these structures.

Regrettably, while lock-free synchronization provides
fast sequential access to shared structures, many-thread syn-
chronization can still lead to substantial contention—e.g.,
when all the threads attempt to perform a CAS on the head
of a queue to update it atomically. For this reason, develop-
ers of highly-threaded codes today turn to algorithms that
distribute synchronization [5, 22, 33, 34, 50, 62].

Unfortunately, these algorithms are difficult to design and
debug. Even more importantly, they often provide only weak
and unintuitive data structure semantics [5, 22, 34, 62]—
e.g., items in a distributed queue are removed in an order
that is different than their insertion order. Such weak seman-
tics make these distributed algorithms more error-prone and
difficult to use, and render them inappropriate for programs
that require familiar semantics.

To reduce synchronization bottlenecks, past designs have
proposed to queue-up the synchronizing processors in a
hardware queue [20, 32, 43, 55, 56, 58, 68]. Other designs
have also proposed to forward or prefetch [56, 65] the data
accessed in the critical section when a lock is transferred.
These proposals attempt to efficiently serialize concurrent
synchronizations. However, they do not solve the serial-
ization problem itself: serialized writes inherently become
slower as the number of synchronizing processors grows. To
make synchronization truly scalable, we need to break the
serialization of the queue and allow the queued processors
to synchronize in parallel.

This paper proposes a novel architecture design that
breaks the serialization of hardware queues and enables the
queued processors to perform lock-free synchronization in



parallel. The scheme, called CASPAR, is applicable to some
common lock-free synchronization patterns. The result is
low-overhead, highly-scalable synchronization. With CAS-
PAR, it is possible to have non-distributed scalable versions
of lock-free data structures.

We present CASPAR in the context of the CAS instruc-
tion, although it also applies to other synchronization in-
structions such as LL/SC. Recall that a CAS takes three
operands: a memory address addr, an old value, and a new
value. A CAS changes the value in addr to new, provided
the current value in addr is old. We observe that, in com-
mon synchronization patterns, the new value that a proces-
sor stores on a variable with a CAS does not depend on the
old value previously read from the variable. Instead, the new
value is generated locally by the processor. For example, as
we will see, this occurs when pushing nodes into a stack.

This observation motivates CASPAR, which exploits it
with two new ideas: (i) parallel execution of the CASes
in the queued-up processors through eager forwarding of
the expected new values, and (ii) parallel validation of the
CASes and group dequeue of the processors.

The first idea uses the fact that a queued processor may
know early-on the new value that it will set the shared vari-
able to. Hence, it eagerly forwards it to its immediate suc-
cessor in the queue, so that the successor processor can use
it as its old value. As a result, queued processors can perform
their CASes early-on and in parallel, and continue execution
past the CAS. However, since the value passed is a hint, the
successors’ execution becomes speculative.

The second idea involves the group validation of CASes
and, therefore, the group commit and dequeue of processors.
It leverages the fact that the directory knows the values
passed between processors and can interrogate a chain of
dependent processors in parallel. If all processors validate, a
two-phase commit operation dequeues them all in one step.
CASPAR effectiveness. We evaluate CASPAR by augment-
ing a simulated 64-core multicore with a synchronization
hardware queue (representing prior work) and then extend-
ing it with the complete CASPAR design. We run five kernels
and several applications—including some from the Galois
system [50]. The applications are modified to use lock-free
data structures. Compared to the design with only the hard-
ware queue, CASPAR: (i) improves the throughput of the ker-
nels by 32% on average, and (ii) reduces the execution time
of the sections considered in the lock-free applications by
47% on average. This makes such sections 2.5x faster than
in the original, tuned versions. Also, compared to a design
with only conventional CAS synchronization, CASPAR im-
proves the kernel throughput by 83% and reduces the execu-
tion time of the application sections by 58% on average.
Contributions. This paper makes three contributions:
• The CASPAR architecture, which provides scalable and ef-
ficient lock-free synchronization by parallelizing the opera-
tion of hardware-queued processors.

• A design for automatically triggering hardware queueing
on the unmarked loads of contended CAS variables.
• Simulation-based evaluation of CASPAR using highly-
threaded kernels and applications.

2. Motivation
Lock-free synchronization (also referred to as nonblocking
synchronization [24]) directly manipulates shared data using
atomic instructions such as CAS and LL/SC, or transactional
memory (TM) instead of using locks (see Section 3 for an
example). Performance-critical multi-threaded codes such as
operating systems [2, 13, 35], databases [4, 15, 63], language
runtimes [19], memory allocators [47, 59, 61], or trading
frameworks [3] often utilize lock-free synchronization to
avoid the overheads of locking.

Lock-free synchronization has two main performance ad-
vantages compared to lock-based solutions. First, it is more
efficient, since it has no lock acquire and release opera-
tions on the critical path. Indeed, lock-free versions of many
basic data structures have fast synchronization operations
that write to at most a few variables—queues [26, 36, 49],
stacks [66], and priority queues [18, 44]. Second, lock-free
algorithms guarantee system-wide progress, and thus elim-
inate problems such as deadlocks and preemption of the
holder of a lock [24].
Performance issues. Lock-free synchronization still has two
performance issues when many processors contend to per-
form a write to the same synchronization variable. First,
sometimes CAS or LL/SC atomic instructions fail, and trans-
actions abort. This can place useless work on the critical
path. Second, contending writes are serialized, as each pro-
cessor must obtain exclusive access to the contended vari-
able’s cache line to update it. This serialization causes the
latency of each write to grow with the amount of concur-
rency, making contending writes non-scalable and slow.
Software approaches. To avoid these issues, developers
turn to algorithms that distribute synchronization [5, 22, 33,
34, 50, 62]. However, these algorithms are often complex
and provide only weak and unintuitive data structure seman-
tics [5, 22, 34, 62]. For example, consider a FIFO queue al-
gorithm. Instead of synchronizing all operations on a single
queue head, we distribute the synchronization. We maintain
a queue per producer thread and require a remove operation
to iterate over each of these queues until it finds an item to re-
move [22]. Doing so, however, no longer maintains the cause
and effect relation in the program: If thread T1 adds x1 to its
queue after thread T0 adds x0 to its queue, a remove can re-
turn x1 before x0. We weakened the guarantees provided by
the queue from global FIFO to per-thread FIFO.
Hardware approaches. Alternatively, there are hardware
proposals to make synchronization efficient (Section 8). The
most relevant to our work are those that build hardware
queues of processors synchronizing on a variable. Specif-



1 // Stack consists of linked list of nodes.
2 // The following defines a stack node:
3 struct Node {
4 struct Node∗ next;
5 void∗ value ;
6 }
7 // Pointer to top of the stack , initially
8 // NULL as the stack is empty:
9 Node∗ stack = NULL;

(a) Definitions

10 void push(void∗ v) {
11 Node ∗old top, ∗new top = malloc ();
12 new top−>value = v;
13 while (true) {
14 old top = stack ;
15 new top−>next = old top;
16 if (CAS(&stack, old top, new top))
17 return;
18 } }

(b) Pushing a value

19 void∗ pop () {
20 Node ∗old top, ∗new top;
21 while (true) {
22 old top = stack ;
23 if ( old top == NULL) return NULL;
24 new top = old top−>next;
25 if (CAS(&stack, old top, new top))
26 return old top−>value;
27 } }

(c) Popping a value

Figure 1: Treiber’s lock-free LIFO stack [66].
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Figure 2: Ideas behind CASPAR.

ically, Goodman et al. [20, 32] proposed QOSB/QOLB,
which forms a hardware queue linking the caches of the
synchronizing processors. Hardware queues have also been
implemented in the directory of DASH [43], and proposed
by other researchers [55, 56, 58, 68]. In one of these de-
signs [55], coherence actions are delayed to prevent repeated
failure of lock acquire or atomic instructions. Specifically, a
processor delays responding to requests on the synchroniza-
tion variable while the processor is executing the critical sec-
tion or the code between LL and SC. Finally, other designs
proposed to forward or prefetch [56, 65] the data accessed
in a critical section while the lock is transferred.

These proposals efficiently serialize concurrent synchro-
nizations. However, they do not solve the serialization prob-
lem itself: executing the critical section or performing the
lock-free write takes on average proportionally longer as the
number of synchronizing processors grows.
Our approach and observation. To make synchronization
truly scalable, we need hardware that breaks the queue seri-
alization and allows the queued processors to synchronize in
parallel. To design this hardware, we observe that, in some
common synchronization patterns that we describe in the
next section, the new value that a CAS writes to a variable

does not depend on the variable’s previous value. We exploit
this fact next.

3. Overview of CASPAR
3.1 A LIFO Stack Example
Figure 1 shows the C code of Treiber’s lock-free LIFO
stack [66]. As shown in Figure 1(a), the stack is a linked
list of nodes, each of which holds a value. The top of the
stack is the first node in the list. The push() (Figure 1(b))
and pop() (Figure 1(c)) operations use a CAS.

We focus on the push() operation. It allocates a new node,
new top (Line 11), whose next field is set to point to the
current top of the stack, old top (Lines 14–15). It then uses
a CAS to set the top of the stack to this new top (Line 16).
A CAS failure implies that another thread has modified the
top of the stack, and so the push() operation retries the CAS
using a freshly-read value of stack.

Figure 2(a) illustrates the above process. It shows the ex-
ecution of two processors (P0 and P1) and the state of the
stack. The top row corresponds to Line 11, where P0 allo-
cates the new topP0 node and P1 allocates the new topP1

node. The second row is for Line 14, where the processors
set their old topP0 and old topP1 to stack. The third row is



for Line 15, where the processors point new topP0→next
and new topP1→next to stack. Finally, the last row is for
Line 16, where both P0 and P1 attempt the CAS but only P0
succeeds. The new topP0 node is inserted at the top of the
stack, and P1 has to retry.
The ABA problem. An ABA problem [48] occurs when a
thread reads the same value (e.g., A) from the stack location
in Lines 14 and 16 and, in between the two reads, other
threads update the location to a different value (e.g., B) and
then back to A. The CAS in Line 16 succeeds, even though
the atomicity of the load-to-CAS execution was violated. As
in other works, in this paper, we assume implementations
that avoid this problem by not recycling a node as long as
some thread holds a reference to it [18, 30, 46].

3.2 CASPAR Ideas
In the push() operation, the CAS of the successful processor
(P0) writes new topP0 to stack. Such a value does not de-
pend on the value that P0 did read from stack into old top.
Instead, it is obtained locally by P0, early-on, with a mal-
loc(). Interestingly, this is the value that the failing processor
(P1) will need to read into its own old top when it wants to
perform the next successful CAS. To summarize, each pro-
cessor generates the new value for its CAS locally and early-
on, and this is the value that its immediate successor will
need to read as its old value to perform its own CAS. This
provides an opportunity for parallelism.

Unfortunately, even the most aggressive proposals for
hardware synchronization queues fail to take advantage of
this opportunity. Indeed, assume a design based on any of the
hardware queues described in Section 2, where requests are
queued-up in hardware in the directory. Further, assume that,
for highest efficiency, the load-to-CAS execution is designed
to be atomic—i.e., a processor reads stack, prepares the new
value, and then writes the new value with the CAS without
any conflicting access allowed to interleave in the middle.

In this design, Figure 2(b) shows the execution timeline
of three processors (P0, P1, and P2). Assume that all three
generate their new values at approximately the same time,
and that they attempt to load old and queue-up in the P0-
P1-P2 order. P0 gets the old value, while the others stall
(thick lines). Only after P0 completes its CAS can P1’s load
complete and return the current old value—even though it
was available as the new value that P0 produced long ago. P2
suffers an even longer stall. The operation of the processors
is completely serialized.
First idea: parallel CAS execution. CASPAR’s first idea is
parallel CAS execution, as shown in Figure 2(c). When a
processor generates its new value locally and early-on, we
propose that it eagerly forwards the new value right away
to its immediate successor in the queue (dashed arrows). A
processor uses the received value as the response to its load
for the old value, and has all the information to perform
the CAS. Hence, the CASes are performed early-on and
in parallel. Since the values forwarded may be incorrect

under certain conditions, execution past the load becomes
speculative (zig-zag lines), and can only commit after a
validation step in the background (solid arrows). Such a step
would require waiting until the processor reaches the head
of the queue, and then verifying that the actual content of
the variable matches the value of the earlier hint. In cases
when the CAS pattern is not amenable to eager forwarding,
CASPAR reverts to the serialization of prior queue designs.
Second idea: parallel CAS validation. CASPAR’s second
idea is to validate groups of CASes in parallel and, there-
fore, commit groups of processors at a time. This technique
reduces the amount of work done speculatively and, hence,
reduces the risk of squashes. It is shown in Figure 2(d). The
idea is based on the observation that the directory knows
the value that each processor forwarded early-on to its suc-
cessor. Hence, the directory can later interrogate a chain of
queued processors in parallel (dotted lines), to see if the
value that a processor’s CAS ended-up generating is indeed
equal to the value that the processor forwarded early-on to
its successor. If this is true for a group of processors that be-
gins with the one at the queue head, the group is committed
and dequeued in one shot.

3.3 CASPAR Effectiveness
CASPAR is effective when queued processors can generate
their new value early-on, independently of the old value that
they read. This pattern appears in several cases. The most
common one is when inserting elements into a shared data
structure, as in the push() operation of Figure 1(b). This
pattern also appears when using atomic swap instructions
(like x86’s XCHG), setting variables to fixed values, reset-
ting variables (e.g., a counter), and detaching a list by swap-
ping the head pointer with null.

Insertion-heavy scenarios occur in many workloads. For
example, they arise in runtimes using a shared work queue
for load-balancing task-based parallelism [51], when the
task queue is populated, either initially or as part of a bulk-
synchronous execution [50, 67]; in update-heavy OS data
structures such as the reverse page map or pathname lookup
cache [12]; in memory allocators when accessing the main
heap [47, 59, 61]; in high-speed networking when enqueuing
packets [13]; and in other cases.

We also believe that the CASPAR ideas apply more
broadly than lock-free code based on CAS or LL/SC, and
can be used to break the serialization in TM (Section 5). We
defer exploration of this idea to future work.

CASPAR is not effective when the new value created by
a queued processor depends on the old value that the pro-
cessor reads. This pattern occurs most commonly when re-
moving elements from a shared data structure. An example
is the pop() operation of Figure 1(c), where the new value of
the stack is obtained by reading the node currently at the top
of the stack and accessing its next field. It also occurs when
inserting elements to a structure using ABA-tagging [48]—
i.e., devoting some bits in pointers for a counter that each



operation increments, to reduce the chance of an ABA prob-
lem. Incrementing such a counter creates a dependency. In
all of these cases, CASPAR reverts to the serialization present
in prior queue designs.

4. CASPAR Architecture
CASPAR is composed of three modules, which (1) iden-
tify contended CASes, (2) efficiently queue-up concurrent
CASes operating on a location, and (3) enable parallel op-
eration of the queued-up CASes (i.e., the process that we
called breaking the serialization). Table 1 lists the modules
and where they reside in the architecture. Since module (2)
is reminiscent of previously-proposed designs of hardware
queues for synchronization (e.g., [20, 32, 43, 56]), we do not
consider it a main contribution of this work. Hence, we only
outline it briefly.

Module Function Location

(1): Identify contended CAS locations Processor core
(2): Efficiently queue-up concurrent CASes
Enforce load-to-CAS atomicity Processor core
Queue requests in the directory Directory module

(3): Parallel operation of queued-up CASes
Parallel CAS execution with Eager Forwarding Mostly core + directory
Parallel CAS validation using Group Commits Mostly directory

Table 1: Components of CASPAR.

For ease of explanation, we divide module (2) into two
parts: enforcing load-to-CAS atomicity and enqueuing re-
quests in the directory. Module (3) is also composed of two
parts: Parallel CAS Execution through eagerly forwarding,
and Parallel CAS Validation using group commits. The fol-
lowing discussion assumes a generic chip multiprocessor
(CMP) with a distributed directory for coherence.

4.1 Identifying Contended CAS Locations
4.1.1 Intuitive Idea
CASPAR dynamically identifies contended CAS locations in
hardware, without the need to modify the executable. To un-
derstand how it works, consider a CAS such as the one in
Line 16 of Figure 1(b). When it has failed a few times in
a row, the CASPAR hardware saves the address it contends
on (i.e., stack) in a table. In addition, every load issued by
the processor is dynamically checked against the entries in
that table. When a load hits (such as the one in Line 14
of Figure 1(b)), the load becomes a Triggering Load (TL),
which exercises the CASPAR hardware. The CASPAR hard-
ware remains active until the corresponding CAS completes,
at which point the hardware actions typically complete. In a
processor, only a single load at a time can be exercising the
CASPAR hardware.

4.1.2 Detailed Design
The two per-processor hardware structures used in this pro-
cess are shown in Figures 3(a)-(b). One is the Triggering
Addresses Table (TAT), which has the addresses identified

as “under CAS contention” by this processor. It is a 4-8 entry
fully-associative table. Its entries are regularly aged out. The
second structure is the Active CAS (AC), which can only
contain one of the addresses from the TAT: the one currently
exercising the CASPAR hardware.
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The address read by each load is compared to the ad-
dresses in the TAT. If a load hits and the AC is currently null,
then the address read from is stored in the AC and the load
becomes a TL. Normally, the AC will retain its value until
the corresponding CAS completes. Then, the AC is cleared.
If a second load hits in the TAT while the AC is full, that
load executes as an plain load (i.e., it is not a TL).

CASPAR does not always need multiple CAS failures to
insert an address in the TAT. We will see that a CAS that has
encountered a queue in the directory returns a hint that can
be used to insert the address accessed in the TAT.

4.2 Efficiently Queueing-up Concurrent CASes
4.2.1 Enforcing Load-to-CAS Atomicity
To support hardware queueing of concurrent CASes directed
to the same address, CASPAR enforces Load-to-CAS atom-
icity. This is shown in Figure 4. A TL requests the memory
line in Exclusive state. When the line arrives at the cache, the
hardware sets a CAS Mode (CM) bit in the line’s cache tag
(Figure 3(c)). The cache is now in CAS Mode, and rejects any
incoming coherence requests for the line. The cache remains
in CAS Mode until the corresponding CAS completes. If no
CAS to the line executes within a timeout period (e.g., due to
a bug), the CAS Mode expires. If an exception occurs, CM
is cleared.

(1)

CAS

(2) (3)

Triggering
load in Exclusive state

Line in cache

CM = 1

Time 

Incoming requests for the CM line are rejected

Figure 4: Timeline to enforce Load-to-CAS atomicity.

It is possible that two or more processors end-up wait-
ing on each other—e.g., if two processors execute load-to-
CASes to different addresses, but, in between the load and
the CAS, they attempt to access the address of the other’s
CAS location (or false-share it). The timeout mechanism
avoids deadlock. A similar timeout mechanism has been pro-
posed for LL/SC [55].



4.2.2 Queueing Requests in the Directory
All the concurrent requesters to a given CAS location are
queued-up in hardware by CASPAR in a directory module.
As shown in Figure 5, when a TL request from processor
Pi arrives at the directory, it is placed at the tail of the
hardware queue. The directory continuously issues requests
to the current owner of the line on behalf of the processor
at the head of the queue. Such requests keep being rejected
while the owner has its CM bit set in its cache line tag.
When the owner clears the CM bit, the directory succeeds
at stealing the line in Exclusive state and sends it to the
processor at the head of the queue—as a response to its
initial TL. Immediately after that, the directory dequeues the
head entry from the directory queue and starts requesting
the line from the new owner on behalf of the new entry at
the head of the queue.

(2) (3)(1)

Directory succeeds to get 
proc Pi gets queued

Time 

T dequeued
Directory attempts to get
the line from owner proc Pj

the line from proc Pj

Directory sends 
Directory attempts to get

the line from Pi

Triggering load T from T reaches the
queue head

line to Pi

Figure 5: Timeline to queue/dequeue requests.

Figure 3(d) shows the hardware queue. Logically, the di-
rectory entry for the contended CAS location has a pointer
to the queue. Each queue entry records the requesting pro-
cessor’s ID, the type of request (request to read or to write),
and if the read is a TL. A directory module can have multiple
queues for different addresses.

A queue entry of Store type is typically due to a CAS
from a processor that is unaware that this location suffers
contention. Hence, as indicated before, when the directory
processes such an entry, it augments its reply to the request-
ing processor with a hint bit. If the access was indeed a CAS,
this bit prompts the requesting processor to save the address
in its TAT (if it is not already there).

4.3 Parallel CAS Execution Through Eager Forwards
Prior proposals that build a synchronization queue in hard-
ware process the queue elements sequentially. CASPAR pro-
cesses them in parallel thanks to two ideas: (1) parallel CAS
execution through Eager Forwarding and (2) parallel CAS
validation using Group Commits. This section describes the
first idea; the next one the other.

4.3.1 Intuitive Idea
CASPAR targets codes where the new value to store in the
CASed location does not depend on the old value in that
location. With CASPAR, a processor Pi, before obtaining
the line with the old value from memory, can forward its
new value to the directory; the directory can send it to the
successor processor Pi+1 in the queue. Pi+1 receives the
value as a response to its TL request for its old value, and

uses this highly-accurate hint of old in its CAS. Note that the
forwarded value is coupled with its offset in the cache line,
so Pi+1 uses it only if it matches its TL address. With this
scheme, both processors can execute the CAS in parallel.

Later, when Pi+1 reaches the head of the queue, the
coherence protocol supplies the line to Pi+1, as the true
response to Pi+1’s TL. On reception of the line, the hardware
in Pi+1 compares the value in the line to the old value
that was received (and used) earlier on. If the validation
succeeds, the hardware merges the new value produced by
Pi+1 into the line, and allows the protocol to transfer the line
to the next processor in the queue.

Typically, the old value received from the predecessor
will be correct. However, there are events such as branch
mispredictions in the predecessor that may cause divergence
between the value forwarded and the line received later. In
this case, the old value used was incorrect and execution
needs to be squashed and restarted from the TL issue. To
support this, in a TL, the processor performs a checkpoint
and enters speculative (i.e., transactional) execution.

CASPAR speeds-up execution because CASes are exe-
cuted early and in parallel. For now, the validation step that
allows processors to exit speculation is serialized. (We relax
this property in Section 4.4.) However, processors can con-
tinue speculative execution past the CAS, until the old value
is validated. Then, they commit all the work performed since
the TL issue.

A value is forwarded by writing it back to the directory in
a fine-grain writeback-like transaction. The directory stores
the value in the queue entry of the sender processor and,
if there is a successor processor, passes the value to the
successor. Note that the successor receives the value as a
speculative response to its TL. This means that the successor
is expecting a value, which makes our approach different
than classical unsolicited forwarding (e.g., [37, 43]).

In practice, the directory does not pass the value to the
successor unconditionally. It tries to avoid passing a value
to a processor whose new value depends on the old value.
To see why, consider the pop() operation in Figure 1(c),
where the new value depends on the old one (Line 24). If a
processor executing pop() receives a forwarded value, it will
dereference it in Line 24, attempting to read data written by
the sender of the forward. This will lead to the squashing of
the predecessor, if it is still executing speculatively.

Therefore, when the directory receives a forwarded value
from Pi, it will only pass it to Pi+1 if and when Pi+1 also
sends a forwarded value to the directory. The latter forward
is a hint that Pi+1 will not squash the predecessor because
its new value does not depend on the old one. Intuitively, in
a queue with push and pop requests, forwarding will only
occur between consecutive pushes. Alternatively, we could
implement CASPAR on top of a TM design that allows some
coherence operations between executing transactions, such
as OmniOrder [54]. This would allow a processor to deref-



new
0

1
new

new
2

P1,

P0,

P2,
−−
−−

−−P0,
P1,
P2,

new
2

−−
−−

−−P0,
P1,
P2,

new
0

1
new

new
2

P1,

P0,

P2,

new
1

2
newP2,

P1,

ld old
1

2
ld oldld old

0

        new
0

        new
1

        new
0

        new
2

        new
1

P0 P2P1

(d)

CAS CASCAS

(a)

P2P1P0

(b)

P2P1P0

(c) (e)

P0 P1

Line

Validation

(f)

P2,

Line

Validation

P1 P2

Directory
Q

u
eu

e

P0

Line Forward

Forward
Forward

Figure 6: Operation of Eager Forwarding.

erence the received value without squashing the predecessor.
We defer this extension to future work.

Figure 6 shows the operation of CASPAR for three proces-
sors. In Figure 6(a), all processors issue TLs, and get queued
as P0 first, then P1, and then P2. The queue contains no new
values. In Figure 6(b), the directory provides the line to P0,
which is at the head of the queue. Soon after the TLs reach
the directory, the forwarded new values also arrive at the di-
rectory, and are stored in the queue (Figure 6(c)). The di-
rectory immediately sends the new values to the successor
processors, and all processors now have the data they need
to perform the CAS in parallel (Figure 6(d)). As described
before, the directory attempts to get the line from P0. When it
succeeds (Figure 6(e)), it pops the first entry from the queue
and replies to the next entry’s TL by sending the line to P1.
P1 validates the speculative execution and commits it. The
directory repeats the same process for P2, which is the new
head of the queue (Figure 6(f)).

4.3.2 Architectural Components Required
Eager forwarding requires architectural components to: (1)
transfer the new value to the successor, (2) accept an early
old value from the predecessor and later validate it, and (3)
support speculative execution from the TL until the execu-
tion is validated. We describe each one in turn and outline
the hardware structures.

A. Transfer the new value. In a conventional pipeline, a
CAS instruction performs the read-modify-write of a cache
line when it is at the head of the Reorder Buffer (ROB). With
CASPAR, a CAS instruction whose address hits in the Active
CAS (AC) (Figure 3(b)) has a two-step execution. First, as
soon as its new value is known, it forwards new to the direc-
tory. Second, when it reaches the ROB head and we know its
new value and its old value (perhaps speculatively), it per-
forms the read-modify-write as in a conventional system.

Since forwarding the new value is on the critical path
of the parallel execution, it is performed as soon as new
is known, bypassing all the other loads and stores by the
processor. This is safe because new is observed only by the
next processor in the directory queue (as it is deposited in the
queue rather than in memory), where it is used only as a hint
that is validated upon committing (i.e., as a value prediction).
As detailed in Section 4.3.4, standard speculative execution

conflict checks guarantee that using a forwarded value does
not cause memory consistency errors.
B. Old value use and validation. After a processor issues a
TL to memory, it may receive a speculative old value from
the directory. Such a value is stored in the AC structure, and
cannot be used until the TL has reached the ROB head and
checkpointed. At that point, execution turns speculative, and
the thread can use the received old value. In particular, the
CAS operation may use it, and store the speculative CAS
result in the cache.

Eventually, the processor will receive from the directory
the line requested by the TL. Then, the hardware compares
the value in the incoming line to the speculative old value.
If the values are different, execution is rolled back to the
checkpoint and the value in the line is used rather than the
speculative old value. Otherwise, the work done so far is
useful and correct, and is committed. Note that this value-
based validation does not introduce an ABA problem [48].
Since the directory manages the hardware queue, a processor
can only see updates from its immediate predecessor; no
other processor’s updates can interleave between the two.
C. Speculative execution from TL to validation. When a
TL reaches the ROB head and the requested line is not in Ex-
clusive (or Dirty) state in the cache, the hardware performs
a checkpoint and the processor enters speculative execution.
If, instead, the line is already in one of these states, there is
no need to become speculative because the CAS will execute
with safe data very soon.

As in conventional TM, during speculative execution,
data conflicts with incoming coherence transactions cause an
abort. If speculative data is about to overflow the cache, the
execution can stall rather than abort. There is no danger of
deadlock because there is always a non-speculative thread—
the one at the head of the queue.

At some point during speculative execution, the requested
line is provided by the memory system. If the processor had
used a speculative old value, then the hardware performs the
above validation step, and the transaction commits or aborts.
This may occur past the CAS execution.
D. Hardware structures. Figure 7(a) shows the two main
hardware structure extensions required for eager forward-
ing. First, in the processor, the Active CAS (AC) is extended
to include the speculative old value received (SpecOld)



and a set of bits (Trans?, LineArrived?, CASDone? and
NewSent?). The speculative old value is kept in the AC to
compare it to the line’s value in the validation step. The bit
fields are used by a state machine to track execution states.
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Figure 7: Additional hardware for eager forwarding (a) and
parallel CAS validation (b).

In the directory queue, we add one extra field per entry.
For the entry of a given processor, the field contains the new
value forwarded by the processor to the directory.

4.3.3 Timeline
Figure 8 shows a typical timeline of eager forwarding. The
events are shown above the horizontal line, while the actions
are shown below the line.
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Figure 8: Timeline to perform eager forwarding.

The first event occurs when a load is identified as TL
(Section 4.1). Event (2) is when the TL reaches the ROB
head. Unless the line is already in Exclusive (or Dirty) state
in the cache, the hardware checkpoints and starts speculative
execution. Event (3) occurs when a CAS instruction in the
pipeline finds that its address matches the one in the AC, and
that its register operand with the new value to write is already
full. In this case, the hardware forwards the new value to the
directory. Typically, the CAS is not at the ROB head.

When an old value is received for a line with the CM bit
set, it is saved in the SpecOld field of the AC for later valida-
tion. If the processor is in speculative mode, then Event (4)
occurs, and the received old value is used in the execution.

Event (5) occurs when the CAS instruction reaches the
ROB head, the register operands with its new value and its
old (possibly speculative) value are full, and all prior ac-
cesses have completed. The CAS then executes, either spec-
ulatively (reading from SpecOld) or not (reading from the
cache). If the CAS succeeds, the cache is updated. Irrespec-
tive of whether the CAS succeeds, execution continues (pos-
sibly speculatively).

Finally, Event (6) occurs when the requested line finally
arrives for a cache entry marked with the CM bit. The hard-
ware validates the SpecOld field of the AC against the line.

If the validation fails, the processor rolls back to the check-
point; otherwise the speculative execution commits. In all
cases, the AC and the CM bit get cleared.

These events may be ordered in slightly different man-
ners. In all cases, it can be shown that the algorithm works.

A processor may forward a new value to the directory
twice. This may occur in a branch misprediction where new
is forwarded on both sides of the branch. The directory only
takes the first forwarded value. This case may cause the suc-
cessor processor to fail the validation. However, correctness
is guaranteed.

4.3.4 Memory Consistency Issues in Forwarding Data
In CASPAR, the new value of a processor (Pi) finds its way
to the immediate successor in the queue (Pi+1) before Pi

performs the CAS. In addition, new can bypass all the other
outgoing accesses from Pi. This operation causes no mem-
ory consistency errors for the following reasons.

First, the forwarded value does not update memory; it is
saved in the directory queue and sent to Pi+1. Second, if
new’s value is wrong, the worst that can happen is that Pi+1

executed past the CAS, gets squashed when its validation
fails, and restarts from the TL using the correct value.

Since new can bypass earlier accesses in Pi’s outgoing
buffers, Pi+1 may observe new before it observes other Pi

accesses that precede the corresponding CAS in Pi’s pro-
gram order. Figure 9 shows an example, where Pi performs
a TL and CAS on location Stack. In between the two, the new
value of Stack is forwarded before Pi updates variable X. It
is possible that Pi+1 reads the forwarded value of Stack and
then X. Hence, it observes the new value of Stack and the
old value of X. This will not cause a consistency violation
because Pi+1 turns speculative when it reads Stack. Hence,
when Pi writes X, it will send an invalidation to Pi+1 and
squash Pi+1’s execution.

Pi Pi+1

.. = Stack

.. =X

... = Stack  /*Triggering load*/

X=1

CAS(&Stack,Old,New)

/* New value of Stack
is forwarded */

Figure 9: Forwarding causes no consistency violation.

In fact, Pi+1’s transaction can commit only if it uses
the correct state. The transaction cannot commit until Pi

performs the CAS, and Pi+1 receives the line and validates
the new value that it used. By this time, all of Pi’s accesses
that precede the CAS have been completed, including all
writes. Such writes would have squashed Pi+1’s transaction
if it had read an incorrect value. Moreover, Pi cannot read
any state generated by Pi+1 before new is validated because
Pi+1’s execution is speculative.
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4.4 Parallel CAS Validation Using Group Commits
With eager forwarding, the queued processors still perform
the CAS validation step sequentially (Figures 6(e)-(f)). In
theory, this should not hurt performance because processors
do not stall after a CAS waiting for validation: they continue
executing speculatively. In practice, however, it is desirable
to validate sooner for two reasons. The first one is to re-
duce the time a processor remains speculative and, hence,
exposed to aborts. The second reason is to avoid stalls in
codes where a processor repeatedly executes CASes to the
same address—a common pattern in codes with fine-grain
synchronization.

Indeed, assume that a processor has issued a TL and com-
pleted a CAS, but has not received the line yet. It remains
speculative. Suppose that it then executes the load for a sec-
ond load-to-CAS to the same address. Since the AC is still
full, the load is not designated a TL but a plain load. The load
goes to the cache and stalls, waiting for the line requested by
the TL. The pipeline will likely stall soon after. In essence,
the processor has overlapped as much speculative execution
as it could with the TL, and it now stalls. It will not resume
execution until the processor receives the line.

If we have a long queue, it will take on average a long
time for the line to reach a processor. As a result, if a
processor repeatedly executes CASes to the same address,
it will likely stall for long periods.

To solve these two problems, we propose to accelerate the
CAS validation by performing it in parallel.

4.4.1 Intuitive Idea
We augment the design of Section 4.3 to validate the CASes
in groups of queued processors at a time. The idea is to aug-
ment the protocol so that the directory orchestrates group-
commits in a manner modeled after the two-phase commit
(2PC) in transactional processing.

Consider a queue of processors, where many have for-
warded their new values to the directory—which in turn has
saved the values and sent them to their successors. When
the directory finally obtains the line, rather than sending it
to the next processor in the queue for validation, it attempts
to group-validate a group of processors. To do this, as it de-
queues the processor that supplied the line, it checks that the
value that the processor forwarded in the past matches the

current value in the line. If so, it proceeds to group-validate
the next set of contiguous processors in the hardware queue
that have provided their new values. It does so in three steps.

First, it sends a Prep message (for “prepare-to-commit”)
to all of these processors in parallel. In each message (say to
processor Pi), the directory includes the new value that the
processor had earlier forwarded to the directory (newi). The
goal is for Pi to validate it against the outcome of Pi’s CAS.
Recall that newi has already been used by the successor
processor Pi+1.

Second, when Pi receives the Prep message, it compares
Prep’s value (newi) to the result of its CAS. If the values
match, the validation succeeds. Pi then responds to the direc-
tory with an Ack message and temporarily sets the pipeline
in a quiescent, stalled state to enable a correct 2PC (see Sec-
tion 4.4.2). If, instead, the values do not match, or Pi has
not performed its CAS yet, or Pi has other pending accesses
waiting for the same cache line, then Pi responds to the di-
rectory with a Nack message and does not stop execution.

Third, after the directory gets all the responses, it identi-
fies the set of contiguous processors (starting from the head
of the queue) that responded with Ack. To these, it sends a
Commit message and removes them from the queue; they
commit their speculative execution and then resume. To the
others that sent Acks, the directory sends a Resume message;
they resume executing speculatively. Finally, to the ones that
sent Nacks, it does not respond.

If the first processor in the queue sent a Nack, the group
commit fails. We will see that this processor then falls back
to the sequential CAS validation of Section 4.3.

Figure 10 shows an example of parallel CAS validation.
In Figure 10(a), four processors are queued up and have for-
warded their new values to the directory (which has passed
them to their successors). In addition, P0, P1, and P3 have
completed their CAS. Assume also that the directory/mem-
ory has attained the line—hence, the line is not in any cache.

In Figure 10(b), the directory initiates a group commit. It
sends a Prep to the four processors, together with the corre-
sponding new values that the processors had forwarded. On
reception, processors P0, P1, and P3 compare the new value
to the outcome of their CAS. Assume that the values match.
Hence, as shown in Figure 10(c), they send Acks to the di-
rectory. P2 has not completed its CAS yet. Hence it sends a



Nack. In Figure 10(d), the directory finds that, starting from
P0, the set of contiguous processors that responded with Ack
are P0 and P1. So, these two can commit in a group. The
directory sends a Commit to them and removes their entries
from the queue. It sends a Resume to P3.

4.4.2 Architectural Components Required
Parallel CAS validation requires components to: (1) quiesce
a processor pipeline in a two-phase commit, (2) commit a
load-to-CAS section without the processor ever obtaining
the memory line with the CAS data, and (3) seamlessly
revert to sequential CAS validation if group validation fails.
A. Quiesce a pipeline in a two-phase commit. We extend
the Active CAS (AC) structure to save the result of a specu-
lative CAS execution. Then, if the processor receives a Prep,
it compares the message’s new value to the result of the CAS.
If they are the same, the processor prepares for a two-phase
commit (2PC).

For correctness, the 2PC requires that the processor be
able to commit if it is instructed to do so. Thus, its specula-
tive execution must never get squashed after sending an Ack.
Quiescing the pipeline achieves this: The processor stops is-
suing new instructions and flushes the pipeline, discarding
all the unretired instructions. It also sets a new bit in the
cache controller called 2PCommit. This bit will reject all in-
coming coherence requests that could cause a squash of the
thread—i.e., incoming reads to speculatively written lines,
and incoming writes to speculatively accessed lines. Finally,
when the write buffer is drained, the processor disables inter-
rupts (like in the x86 CLI instruction), bringing the pipeline
to the quiescent state.

Once in quiescent state, the processor sends the Ack to the
directory. It remains quiescent until the arrival of a Commit
or Resume. Then (after committing the thread if the message
was a Commit) the 2PCommit bit is cleared to accept all co-
herence requests. Interrupts are re-enabled (like in x86’s STI
instruction) and the processor re-starts issuing instructions.

It is possible that a pipeline cannot get into a quiescent
state because the writes in its write buffer end up getting re-
jected by another processor with its 2PCommit bit set. This
case is detected because the response to the rejected writes
indicates that the destination processor does not accept re-
quests. In this case, the processor refuses to participate in
the 2PC: it sends a Nack to the directory and continues ex-
ecuting. Its CAS will be validated later, either in a group or
sequentially with the default algorithm.
B. Commit without ever getting the cache line. A success-
ful parallel CAS validation is fast because the memory line
with the CAS data does not need to be transferred between
the caches of the processors involved. Instead, these proces-
sors commit their load-to-CAS code without ever obtaining
the line in their caches.

To see how it works, consider a processor that is execut-
ing a load-to-CAS section. The TL caused a cache miss,
which triggered the allocation of an MSHR entry and of

space for a line in the cache. When the old value is received
from the predecessor, it is stored in the MSHR and used
speculatively. Later, the CAS is performed speculatively and
its result is stored in the AC. Suppose that a Prep now ar-
rives and its value matches the CAS value in the AC. If
and when the Commit is eventually received, the hardware
simply commits the execution. In addition, it discards the
MSHR entry and frees-up the empty cache line.
C. Seamlessly revert to sequential CAS validation. When-
ever a group commit fails, our algorithm performs a sequen-
tial CAS validation like the algorithm of Section 4.3. Specif-
ically, a failure occurs when the first processor in the queue
(P0) responds to the directory’s Prep with a Nack. This may
be because either P0 has not performed its CAS yet or P0’s
CAS fails the validation—i.e., the CAS produces a value dif-
ferent than the one P0 forwarded to the directory (new0). In
either case, in CASPAR, the directory sends the memory line
to P0, which performs a local CAS validation as described in
Section 4.3. The directory also sends Resumes to processors
that sent Acks. As usual, the directory will then try to obtain
the cache line from P0. Once it gets it, it attempts the next
parallel CAS validation.
D. Hardware structures. Figure 7(b) shows the two main
hardware structure extensions required. First, in the proces-
sor, the Active CAS (AC) is extended to include the result
of the speculative CAS operation (SpecCASResult). Second,
in the cache controller, we have the 2PCommit bit, which re-
jects incoming coherence requests that could cause a squash
of the thread during the two-phase commit.

5. Supporting Other Primitives
CASPAR applies straightforwardly to other atomic instruc-
tions, such as LL/SC [29]. LL/SC has an explicit triggering
load (i.e., the LL), and so is simple to serialize with hardware
queueing. We can then apply parallel execution and valida-
tion, which are agnostic to the atomic instruction used.

We believe CASPAR can also be extended to TM, which is
increasingly being used for lock-free synchronization [16].
In typical TM designs, programmer-defined transactions
that execute read-modify-write (RMW) access sequences
to shared variables (e.g., a queue head) will abort on conflict
and be serialized. Such transactions can benefit from the
CASPAR ideas. Specifically, aborts can be used as the signal
to identify the contended variables, similarly to how TLs
are identified. Once a RMW sequence of accesses is identi-
fied, the written value can be eagerly forwarded to another
transaction, allowing the concurrent execution of multiple
transactions. Compared to the current CASPAR design, sup-
porting TM presents new challenges, such as the possibility
of multiple RMW sequences in a transaction. We defer ex-
ploration of this CASPAR extension to future work.

6. Evaluation Environment
We evaluate CASPAR with simulations of a 64-core chip us-
ing the Sniper simulator [14]. Table 2 shows the baseline



architecture modeled. The core and L1/L2 cache parameters
are taken from Nehalem [64]. We implement three designs
which incrementally build on top of this baseline (B). They
are Queue (Q), EagerForwarding (EF) and CASPAR (C).
Queue implements basic hardware queueing in each module
of the distributed L3 tag directory, similar to past proposals,
as per Section 4.2. EagerForwarding adds parallel CAS ex-
ecution with eager forwarding as per Section 4.3. CASPAR
further adds support for parallel CAS validation using group
commits as per Section 4.4, and is our complete design.

Parameter Value

Architecture 64 cores on chip
Core 2.66 GHz, 4-wide out-of-order
ROB, Res. Stations 128 entries, 36 entries (unified)
Private L1 32KB WB, 8-way, 4 cycles round trip
Private L2 256KB WB, 8-way, 9 cycles round trip
Shared, NUCA L3 16MB WB, 16-way, 12 cycles (near access)
Cache line size 64B
Coherence MESI, full-mapped tag directory
Network 2-D torus, 2-cycle hop latency, 64 bits/cycle link
Main memory 120 cycles round trip
Entering quiescence ≈ Time to drain write buffer

Table 2: Architecture simulated.

We use two sets of programs for our evaluation (Table 3):
five kernels and four applications. The kernels consist of
four computational kernels (FIFO, LPO, MBrot, and LIFO)
and one standard memory allocation kernel (Larson). In the
computational kernels, each thread executes a loop where,
in each iteration, the thread performs some computation and
then synchronizes with a lock-free operation. The mem-
ory allocation kernel runs Michael’s memory allocator [47],
which internally uses lock-free algorithms.

Program Description

Kernels:
FIFO Add/remove from Michael and Scott’s lock-free queue [49].
LIFO-push-
only (LPO)

Push into a lock-free stack, modeling bulk synchroniza-
tion [67] or initial population of a work list.

MBrot Mandelbrot set computation. Computing threads pass re-
sults to rendering thread via a multi-producer/single-consumer
queue.

Larson Threads allocate/deallocate objects, while transferring some
objects to be freed by other threads [41].

LIFO Push/Pop into a Treiber’s lock-free stack [66].

Applications:
FFT 1D FFT of a vector of complex values from BOTS.
CC Connected components computation based on a concurrent

union-find algorithm from Galois. Input is USA road network.
IS Maximal independent set computation from Galois. Input is

USA road network.
DT Delaunay triangulation from a given a set of points from Ga-

lois. Input is 5 million 2D points.

Table 3: Programs evaluated.

The applications are FFT from the Barcelona OpenMP
Tasks Suite (BOTS) [17] and three graph analytics programs
from the Galois system [39, 50]. BOTS includes several
task parallel applications from various domains; we eval-
uate FFT, which uses fine-grained tasks and stresses the
task scheduler. We run FFT using the open-source Qthreads
parallel runtime [51, 69], which supports multiple schedul-
ing options. We compare schedulers that use lock-free

LIFO [66] and FIFO [49] queues to the default lock-based
scheduler. Galois [39] provides a domain-specific language
and runtime for graph algorithms. The runtime parallelizes
graph analytics loops using a work list data structure where
threads add/remove work. We evaluate three Galois pro-
grams where work list synchronization accounts for a sizable
fraction of the execution time. We add lock-free LIFO and
FIFO work lists to the Galois 2.2.1 runtime 1, and compare
the execution time to the default lock-based work list.

7. Evaluation
7.1 Kernels
Since the threads in the kernels repeatedly perform work and
then synchronize using a lock-free algorithm, we use CAS
throughput—the number of successful CAS operations per
unit time—as the performance metric. We measure through-
put over 5 ms (13.3 million cycles) of kernel execution time.
Figure 11 shows the results, normalized to the throughput
of the baseline (B) design. On average, EF and C improve
the CAS throughput by 53% and 83%, respectively, over the
baseline multicore (B), and by 10% and 32%, respectively,
over hardware queues only (Q).
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Figure 11: Kernel throughput for the different designs.

The gains vary depending on the kernel characteristics.
Hardware queueing (Q) provides benefits in most of the ker-
nels. The benefits are especially large in Larson and LIFO,
where B’s CASes frequently fail. Q eliminates CAS failures
by enforcing load-to-CAS atomicity.

EF provides additional throughput boost for most kernels.
The improvements are largest in the kernels with mostly en-
queue operations, namely LPO and MBrot. The other kernels
have both enqueue and dequeue operations; the latter have
CAS dependencies as shown in Figure 1(c), which reduce
the frequency of eager forwarding.

C improves over EF in all kernels except FIFO. To see
why, recall that a processor in EF can execute speculatively
past a CAS but stalls upon attempting to execute another
load to the location that was CASed until the pending cache
line arrives (Section 4.4). The wait time for the cache line
is proportional to the length of the queue in the directory.
On average, the queue size increases by 2.2x from Q to
EF, since speculative execution increases the rate at which a

1The code is available at http://git.io/galoisLF.

http://git.io/galoisLF


core issues TLs. This results in stall cycles for kernels where
the work between successive executions of the load-to-CAS
section is too small to absorb the wait time for the cache line.
This is the case for all kernels under EF except FIFO. On
the other hand, C uses group commit to dequeue groups of
processors at a time. With C, the average queue size is≈33%
of Q’s. This reduces the stall and improves the throughput of
C over EF in these kernels. In FIFO, EF had few stall cycles,
and so C and EF perform comparably.

7.1.1 Impact of the Amount of Work
We now measure the change in throughput as we change
the amount of work performed between synchronizations.
We start with the amount of work in the experiments of
Figure 11 and progressively reduce the work. Figures 12(a)-
(c) show the throughput of LPO, MBrot and LIFO in each of
the architectures. The plots are normalized to the B design
for the amount of work in Figure 11.
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Figure 12: Impact of work size (a-c) & scalability (d-f).

Reducing the work should increase CAS throughput,
but it also increases CAS contention. In B, it increases the
CAS failure rate. This results in a largely flat or decreasing
throughput, which is the number of successful CASes per
unit time. In Q, hardware queueing improves synchroniza-
tion efficiency and eliminates CAS failures. Hence, decreas-
ing work increases the CAS throughput in two of the three
kernels.

In EF, the throughput is initially higher than in Q because
processors perform part of the work speculatively. However,
the throughput gap between the two narrows as the available
work to speculate on decreases. EF is unable to exploit the
reduction in work to improve throughput in two kernels—
the processors eventually stall. Finally, C keeps increasing
its throughput as the amount of work decreases. This is due
to C’s parallel validation, which eliminates EF’s stalls.

To better compare EF and C, Figure 13 breaks down the
normalized execution cycles in EF and C as they run MBrot
and FIFO. We show two variants per kernel: high work and
low work between CASes. The cycles are broken down into
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Figure 13: Cycle breakdown for EF and C. The numbers at
the top of the bars are the CAS throughput.

non-speculative execution, processor stalls while specula-
tive, quiescent pipeline (C only), and speculative execution
of useful work. On top of the bars, we have the CAS through-
put in successful CASes per 1,000 cycles.

Consider MBrot first. When the work is low, EF stalls
frequently. C converts a good fraction of these cycles to
non-speculative cycles using group commit. While C suffers
from some quiescent pipeline cycles, the result is a large
improvement in throughput. When the work is high, EF has
fewer stall cycles. In this case, C converts both the remaining
stall cycles and a portion of speculative cycles into non-
speculative. However, the CAS throughput is not as high
because improvements come only from the elimination of
the stall cycles.

Consider FIFO now. When the work is low, EF has
stall cycles and C eliminates most of them, increasing the
throughput. When the work is high, however, EF has few
stall or speculative cycles. The hardware queue is short and
contains both push and pop requests. As a result, C is unable
to perform much parallel CAS validation, and does not re-
duce either type of cycles. As a result, as shown in Figure 11,
the EF and C throughputs are similar.

7.1.2 Scalability
We now measure the throughput as we change the number
of processors for a fixed amount of work (i.e., the interme-
diate work amount from Figures 12(a)-(c)). This is shown in
Figures 12(d)-(f), which are normalized to B with 32 cores.
We note that LPO and LIFO have high CAS contention.
Hence, they scale poorly in B because, with more cores, we
have more CAS failures. Q and EF maintain performance
for these kernels even at a high core count. C breaks the se-
quential validation in EF, and scales well. On the other hand,
MBrot has low CAS contention. Hence, B’s throughput im-
proves with additional cores due to parallelization. Q and EF
scale better, and C scales linearly.

7.2 Applications
Figure 14 compares the execution time of the applications
(both LIFO and FIFO variants) on different architectures.
The B bar is now replaced by two bars: L is the original lock-
based version, and LF is the lock-free one. Q, EF, and C use
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Figure 14: Execution time of the applications.

the latter. The time is normalized to L and broken down into
the categories of Figure 13—though the Quiescent cycles are
too few to see. The average bars are not broken down. The
number above each program is the fraction of the program
time that we simulate. In Galois, this is the phase in which
the work list is populated.

By taking L and re-writing the synchronizations in a
lock-free manner in LF, the execution time decreases by
an average of only 4%—in fact, in some programs, the
time goes up. As we go from LF to Q, the efficient queue-
based synchronization reduces the execution time by 22%
on average. Among the applications, CC and DT have the
highest reductions. This is because they have the least work
between successive calls to the load-to-CAS region and, as a
result, suffered a high CAS failure rate. Going from Q to EF,
we see that adding eager forwarding reduces the execution
time by 12% on average. The reductions are substantial
in IS, where there are long queues and data is forwarded
effectively. The other programs have smaller gains in EF:
in CC and DT, the processors forward data but soon stall as
they re-reference the CAS location; in FFT, the hardware
queue has as many requests for enqueue as for dequeue
operations, hampering data forwarding. Finally, going from
EF to C, we see that adding group commits reduces the
execution time by 40% on average. The largest reductions
occur in CC and DT, where the processors were stalled, and
group commit allows them to make progress. In the other
programs, C helps processors commit sooner, transforming
speculative cycles into non-speculative ones. However, this
does not translate into lower execution time.

Overall, C is a very robust design. On average, it reduces
the execution time of these sections of applications by 47%
relative to Q, and 58% relative to LF. It makes these lock-free
sections 2.5x faster on average than the original, lock-based
versions (L).

8. Related Work
TM. Most conflict-serializable TM designs [8, 11, 53, 54,
57] abort when multiple transactions read the same variable
and then write to it. In contrast, CASPAR preemptively se-

rializes such regions. Other designs [10, 28] similarly pre-
emptively stall loads to contended locations. These designs
place special software routines on the transactions’ critical
path. DATM [57] and OmniOrder [54] transfer speculative
data from one transaction to another. They do so to prevent
squashes between transactions that commit serially. In con-
trast, CASPAR transfers speculative data early so that serial-
ized operations can execute in parallel.
Hardware support for scalable synchronization. The pro-
posals most relevant to our work are those that build hard-
ware synchronization queues [20, 32, 43, 55, 56, 58, 68]. In
Section 2, we showed how they relate to our work. Some
experimental or commercial machines have implemented
other scalable synchronization primitives. They include Ful-
l/Empty bits in the HEP [31] and Tera multiprocessors [7];
Fetch&Add with request combining in the NYU Ultracom-
puter [21]; Fetch&Φ operations in the IBM RP3 [52], the
SGI Origin [42], and the Cray T3E [60]; and a versatile Syn-
chronization Processor in Cedar [38].

9. Conclusions and Future Work
This paper proposed CASPAR, an architecture that breaks
the serialization of hardware queues and enables the queued
processors to perform lock-free synchronization in parallel.
CASPAR executes the CASes in the queued-up processors in
parallel through eager forwarding, and validates them in par-
allel through group commit. Compared to existing propos-
als with hardware queues, CASPAR improves the throughput
of kernels by 32% on average, and reduces the execution
time of the sections considered in lock-free versions of ap-
plications by 47% on average. This makes such sections 2.5x
faster than in the original applications.

CASPAR can be improved in several ways. First, we can
dynamically rearrange the placement of processors in the
queue so that processors that forward values to the queue
are placed next to each other. This would increase eager
forwarding effectiveness. Also, CASPAR can leverage TM
designs such as OmniOrder [54] that allow passing data
between transactions. Finally, we can extend CASPAR to
allow breaking serialization in TM.
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