
CounterMiner: Mining Big Performance Data
from Hardware Counters

Yirong Lv
HICAS

Shenzhen Institute of Advanced Technology, CAS
Shenzhen, China

lyr060813@163.com

Bin Sun
Information Engineering College

Capital Normal University
Beijing, China

brad sun@126.com

Qinyi Luo
Department of Computer Science
University of Southern California

Los Angles, USA

qingyiluo@usc.edu

Jing Wang
Information Engineering College

Capital Normal University
Beijing, China

jwang@cnu.edu.cn

Zhibin Yu
HICAS

Shenzhen Institute of Advanced Technology, CAS
Shenzhen, China

zb.yu@siat.ac.cn

Xuehai Qian
Department of Computer Science
University of Southern California)

Los Angles, USA

xuehai.qian@usc.edu

Abstract—Modern processors typically provide a small number
of hardware performance counters to capture a large number of
microarchitecture events 1. These counters can easily generate a
huge amount (e.g., GB or TB per day) of data, which we call big
performance data in cloud computing platforms with more than
thousands of servers and millions of complex workloads running
in a ”24/7/365” manner. The big performance data provides
a precious foundation for root cause analysis of performance
bottlenecks, architecture and compiler optimization, and many
more. However, it is challenging to extract value from the big
performance data due to: 1) the many unperceivable errors (e.g.,
outliers and missing values); and 2) the difficulty of obtaining
insights, e.g., relating events to performance.

In this paper, we propose CounterMiner, a rigorous method-
ology that enables the measurement and understanding of big
performance data by using data mining and machine learning
techniques. It includes three novel components: 1) using data
cleaning to improve data quality by replacing outliers and filling
in missing values; 2) iteratively quantifying, ranking, and pruning
events based on their importance with respect to performance; 3)
quantifying interaction intensity between two events by residual
variance. We use sixteen benchmarks (eight from CloudSuite
and eight from the Spark 2 version of HiBench) to evaluate
CounterMiner. The experimental results show that CounterMiner
reduces the average error from 28.3% to 7.7% when multiplexing
10 events on 4 hardware counters. We also conduct a real-world
case study, showing that identifying important configuration
parameters of Spark programs by event importance is much
faster than directly ranking the importance of these parameters.

Index Terms—performance, big data, computer architecture,
performance counters, data mining

I. INTRODUCTION

Modern processors typically provide 4-8 hardware counters

to measure hundreds of crucial events such as cache and TLB

misses [1]–[4]. These events can generally reveal root causes

and key insights about the performance of computer systems.

1We use events to represent microarchitecture events throughput the paper.
2We use Spark to represent Apache Spark throughput the paper.

Therefore, performance counter based analysis is applied in a

wide range of applications, including task scheduling [5], [6],

workload characterization [7]–[14], performance optimization

of applications [15]–[18], compiler optimization [19]–[21],

architecture optimization [22], and many more. A number

of programable performance measurement tools have there-

fore been developed, including PAPI [23], VTune [24], Perf-

mon [25], Oprofile [26], and many others [27], [28].

However, there is a fundamental tension between accu-

racy and efficiency when using a small number of hardware

counters to measure a large number of events. On the one

side, the one counter one event (OCOE) approach can achieve

high accuracy because a number of events are measured by

the same number of hardware counters at a time. Obviously,

OCOE becomes inefficient with more than one hundred and

up to fourteen hundreds of measurable events [29].

This motivates the multiplexing (MLPX) approach, which

improves the measurement efficiency by scheduling events

from a fraction of execution to be counted on hardware

counters and extrapolating the full behavior of each event from

its samples. However, MLPX incurs large measurement errors

due to time-sharing and sampling [4], [30]–[32].

In cloud computing era, this problem is exaggerated for two

reasons. First, resolving the measurement errors of MLPX is

a requirement. A modern cloud computing platform usually

consists of more than thousand of servers and millions of com-

plex workloads running services with diverse characteristics

in a ”24/7/365” manner. The major companies have good

incentives to understand the performance behavior because

a small performance improvement (e.g., 1%) can result in

millions of dollars of savings [7]. In this context, randomly

selecting and measuring a small number of events with OCOE

is not sufficient because the cloud services’ performance may

be affected by the unmeasured events. To measure a large

number of events, using MLPX and handling its measurement

errors are mandatory. Prior work shows that the errors cannot

613

2018 51st Annual IEEE/ACM International Symposium on Microarchitecture

978-1-5386-6240-3/18/$31.00 ©2018 IEEE
DOI 10.1109/MICRO.2018.00056

Authorized licensed use limited to: University of Southern California. Downloaded on September 27,2021 at 23:16:55 UTC from IEEE Xplore. Restrictions apply.

be effectively avoided during the sampling [33], [34].

Second, it becomes more difficult to extract insights of

performance behavior. The events of server processors in a

cloud computing platform can generate a huge amount of data,

leading to big performance data. For example, GWP (Google-

wide-Profiler) [7] could generate several GBs of performance

data per day. If we treat the data equally, the high event

dimensionality (typically > 100) incurs extremely high cost.

In this paper, we propose CounterMiner, a rigorous method-

ology that enables the measurement and understanding of the

big performance data with data mining and machine learning

techniques. It includes three components: 1) data cleaner,

which improves the counter data quality by replacing outliers

and filling in missing values after the sampling of MLPX,

which is complementary to [33], [34]; 2) importance ranker,

which iteratively quantifies, ranks, and prunes events based on

their importance with respect to performance; 3) interaction

ranker, which quantifies interaction intensity between two

events by residual variance.

We use sixteen benchmarks that eight from CloudSuite [35]

and eight from the Spark version of HiBench [36] to evaluate

CounterMiner. The experimental results show that Counter-

Miner reduces the average error from 28.3% to 7.7% when

multiplexing 10 events on 4 hardware counters. We also

conduct a real-world case study, showing that identifying

important configuration parameters of Spark programs by

event importance is much faster than directly ranking the

importance of these parameters.

Moreover, CounterMiner reveals a number of interesting

findings: 1) the event of stall cycles due to instruction queue
full is the most important event for most cloud programs; 2)
the branch related events interact with other events the most

strongly; 3) there is a ’one-three significantly more important’
law (’one-three SMI’ for short) which concludes that gen-

erally one to three events of a benchmark are significantly

more important than others with respect to performance; 4)
a number of noisy events of a modern processor can be

definitely removed; 5) there are common important events

related to branches, TLBs (instruction, data, and second-level

TLBs), and remote memory and remote cache operations; 6)
the eight Spark benchmarks from HiBench surprisingly show

more diversity than those from CloudSuite when we look at

the top ten important events. These findings are valuable to

guide cross-layer performance optimizations of architecture

and applications of cloud systems.

The rest of this paper is organized as follows. Section II

discusses the background and motivation. Section III presents

our CounterMiner framework. Section IV describes the ex-

perimental methodology. Section V provides the results and

analysis. Section VI discusses the related work, and Section VI

concludes the paper.

II. BACKGROUND AND MOTIVATION

A. Hardware Counters

Every modern processor has a logical unit called Perfor-

mance Monitoring Unit (PMU) which consists of a set of

hardware counters. A counter counts how many times a certain

event occurs during a time interval of a program’s execution.

The number of counters may vary across microarchitectures

or even processor modes within the same microarchitecture.

For example, ARM Cortex-A53 MPCore processor has six

counter registers [2] while recent Intel processors have three

fixed counters (which can only measure specific events such as

clock cycles and retired instructions) and eight programmable

counters per core (four per SMT thread if it is enabled) [1].

The events that can be measured by hardware counters

are predefined by processor vendors. The number of events

may also be significantly different for different generations

of processors within the same microarchitecture, let alone

different microarchitectures. For instance, the basic Ivy-Bridge

model defines only 338 events whereas the high-end IvyTown

chips support 1423 events [29]. In summary, the number of

events greatly outnumbers that of hardware counters (more

than one hundred vs. less than ten).

There are two ways to program hardware counters to capture

events. In the one counter one event (OCOE) approach, one

hardware counter is only programmed for counting one event

during the whole profiling period of a program. OCOE is

accurate because one counter is dedicated to one event at a

time. However, OCOE is ineffective because one usually needs

to measure a large number of events to identify the root causes

of performance bottlenecks for an unknown system [37]. The

number of events that can be simultaneously measured in

OCOE is equal to or less than that of the available hardware

counters of a processor.

Multiplexing (MLPX) is developed to improve the measure-

ment efficiency by letting multiple events timeshare a single

hardware counter [4], [38]. In MLPX, events are scheduled

to be sampled during a fraction of execution. Based on the

samples, the full behavior of each event is extrapolated [30].

However, large measurement errors occur with MLPX be-

cause information may be lost when the event does not happen

during a sampled interval [30], [33], [34] but happens during

a un-sampled interval. Mathur et al. [38] reported that higher

than 50% of errors were observed when the SPEC CPU 2000

benchmarks were profiled with MLPX.

B. Motivation

1) Measurement Errors: while some prior works such as

[14], [15] employ OCOE to measure performance, MLPX is

mandatory when a large number of events need to be sampled,

e.g., for emerging workloads in cloud computing. Moreover,

quantifying measurement errors is a fundamental challenge

due to the sampling nature of MLPX.

We conduct the following experiments to observe the errors

caused by MLPX. We firstly run a set of cloud computing

programs and measure their events by OCOE. Since different

runs of the same program in cloud computing platforms may

take different times, which is caused by the non-deterministic

nature of modern operating systems, the different time series

for the same event may have different lengths. The traditional

approaches such as calculating the Euclidean or Manhattan

614

Authorized licensed use limited to: University of Southern California. Downloaded on September 27,2021 at 23:16:55 UTC from IEEE Xplore. Restrictions apply.

0%
10%
20%
30%
40%
50%

AGG BAY JON KME PGR SCN SOT WDC AVG

er
ro

r

Fig. 1. The measurement errors caused by MLPX. WDC-wordcount, PGR-
pagerank, AGG-aggregation, JON-join, SCN-scan, SOT-sort, BAY-Bayes,
KME-kmeans, DAA-DataAnalytics, DAC-DataCaching, DAS-DataServing,
GPA-GraphAnalytics, IMA - In-memoryAnalytics, MES-MediaStreaming,
WSH-WebSearch, WSG-WebServing. AVG-average error.

distance between two vectors cannot calculate the performance

behavior differences [39] because they require the two vectors

have the same length. In order to compute the distance

(difference) between two time series, we must “wrap” the

time axis of one (or both) sequences to achieve a better

alignment. Dynamic time wrapping (DTW) [40] is a technique

for efficiently achieving this wrapping. It employs a dynamic

programming approach to align one time series to one another

so that the distance measurement is minimized. We therefore

employ DTW to calculate the distance between two event time

series as follows:

dist = DTW (S1, S2) (1)

where S1 and S2 are the first and second time series for the

same event, respectively. Note that the length of S1 is not

necessarily equal to that of S2.

First, we calculate the DTW between two time series

collected by OCOE, denoted by distref .

distref = DTW (Socoe1, Socoe2) (2)

where Socoe1 and Socoe2 are the two time series for a certain

event of the same program collected by OCOE. Due to

the accuracy of OCOE and non-deterministic nature of OS,

distref is a nonzero value but is theoretically close to zero.

Second, we compute the DTW between one time series col-

lected by MLPX and one by OCOE, represented by distmea.

distmea = DTW (Smlpx, Socoe) (3)

where Smlpx and Socoe are the time series collected by MLPX

and OCOE, respectively. Smlpx and Socoe are for the same

program with the same event. Theoretically, distmea is larger

than distref due to MLPX.

Finally, we define the error caused by MLPX as follows:

error = |1− distref
distmea

| × 100% (4)

This error definition roughly quantifies how close the time

series generated by MLPX is to the one obtained by OCOE.

Since Socoe1 and Socoe2 are both collected by OCOE for the

same program with the same event, distref is a very small

value that is close to zero. In contrast, distmea is larger than

distref . Thus, error reflects the error caused by MPLX.

Figure 1 shows that the errors caused by MLPX for the event

ICACHE.MISSES for 16 programs (the program description

is presented in Section IV-B). We can see that the minimum

and maximum errors are 8.8% and 43.3%, respectively. The

0
0.5

1
1.5

2
2.5

3
3.5

1 39 77 11
5

15
3

19
1

22
9

26
7

30
5

34
3

38
1

41
9#

of
 u

 o
ps

(x
10

3)

measurement samples

OCOE
MLPX

0
10
20
30
40
50
60

1 33 65 97 12
9

16
1

19
3

22
5

25
7

28
9

32
1

35
3

38
5

41
7

of

 m
is

se
s

measurement samples

OCOE
MLPX

outliers missing values

(a) (b)

Fig. 2. The outlier and missing value examples in benchmark WordCount.
(a) The outliers in the time series of event IDQ.DSB UOPS (the # of uops
delivered to Instruction Decode Queue from the Decode Stream Buffer path).
(b) The missing values in the time series of event ICACHE.MISSES (the #
of instruction cache misses per 1K instructions).

average error achieves 28.3%. For other events, we observe

similar or even higher errors.

By carefully analyzing the errors, we find two root causes:

outliers and missing values. Figure 2 (a) shows an example of

outliers. In the end of the time series of event IDQ.DSB UOPS

collected by MLPX, the number of UOPS is 4.2× of the

normal numbers collected by OCOE. Such outliers will sig-

nificantly “improve” the overall results if they are taken into

account. On the other hand, Figure 2 (b) illustrates an example

of missing values. By using OCOE, we observe a large number

of instruction cache misses at the beginning of the time series

of event ICACHE.MISSES. This is reasonable because at the

beginning of a program execution, the instruction cache is

empty (a.k.a ”cold cache”) and a large number of misses

must happen. However, these instruction cache misses are not

observed by MLPX. These examples indicate that MLPX may

indeed cause large errors. Moreover, simultaneously measuring

more events in MLPX generally exacerbates the problem, as

shown in Figure 3. These errors, however, are difficult to

be removed by event scheduling [33], [34] and estimation

algorithms [38]during the sampling procedure. This motivates

us to reduce them by data cleaning techniques after the

sampling procedure of MLPX, which is very important for

mining the CPU big performance data in an off-line manner.

2) Are all events equally important?: Due to the large num-

ber of measurable events compared to the available hardware

counters (e.g., 207× for HaswellX [29]), MLPX is therefore

mandatory, but it comes at a high cost. Figure 3 shows

that the MLPX errors increase with more events measured

simultaneously with the limited hardware counters (red line

indicates the trend). To lower the errors, the number of events

measured by the same counter during a program’s execution

needs to be limited. However, this makes the same program

need to run many times to measure all the events of the

processor being used.

On the other side, measuring all events may not be neces-

sary. First, even if we measure all the events accurately in an

ideal scenario at the same time, most values are zeros, which

is inconceivable. Second, the optimization overhead would be

extremely high when considering all the events of a processor.

In fact, to improve performance, an OS can only leverage

a small number of events to provide feedback to a runtime

system for optimization [29].

Therefore, it is crucial to identify a subset of events that are

615

Authorized licensed use limited to: University of Southern California. Downloaded on September 27,2021 at 23:16:55 UTC from IEEE Xplore. Restrictions apply.

37%
35%

41%

55% 50%
44%

54%

30%
35%
40%
45%
50%
55%

10 16 20 24 28 32 36

er
ro

r

The number of events collected simultaneously

Fig. 3. The error variation with the number of events (represented by the
numbers along with X axis) measured simultaneously.

strongly relevant for a given architecture or workload [29]. It

can reduce both measurement and optimization overhead. The

key to achieve this goal is to quantify the importance of events.

III. COUNTERMINER METHODOLOGY

CounterMiner is a methodology designed to mine the big

performance data collected from hardware counters. It reduces

the measurement errors of MLPX by leveraging data cleaning

techniques rather than traditional event scheduling [33], [34]

and estimation algorithms [38]. CounterMiner is comple-

mentary to [34] [33] [38] because CounterMiner does that

after (not during) the sampling. Moreover, it quantifies the

importance of events and the interactions between two events

with respect to performance. Figure 4 shows the workflow of

CounterMiner. It consists of four components: data collector,

data cleaner, importance ranker, and interaction ranker.

A. Data Collector
The data collector is in charge of sampling the values of

events when a program is running. It supports two modes:

OCOE and MLPX. The data collector can be any available

counter profiling tools such as Perf [41] and Permon2 [25]. In

this paper, we use the Linux Perf [41] because it is available

in all Linux distributions.
We take the sampled values of an event as a time series

since it is important to observe the time varying behaviors of

the event [30]. We formally describe the time series as follows:

TSei = {Vi1, Vi2, ..., Vij , ..., Vin} (5)

where TSei is the time series for the ith event of a program,

Vij is the jth value of the ith event, and n is the total

number of sampled values for TSei. The important feature

as well as challenge of these time series is that their lengths

may be significantly different even for the same event of the

same program because of the non-deterministic behavior of a

modern OS. This property makes storing and analyzing these

time series challenging.
We store the collected time series in a database management

system (DBMS) which can be any popular DBMS such as

MySQL and SQL Server. In CounterMiner, we employ SQLite

because it seamlessly integrates with Python which is the

program language we used for data analysis. In the database,

we design a two-level table organization. The first level tables

store information including the name of a program, the names

of the measured events, the execution times of the program,

and the names of the second-level tables. The second-level

tables store the time series for the measured events for a

program at each run. Note that these two level tables may

need to be re-initialized when CounterMiner is applied on a

different microarchitecture.

Event selectionEvent selectionEvent selection
Perf Tools

Workloads

Raw time series

Data integrator

Data filter

Data interpolator

Importance
quantification

Event selection

<e1,e2> pair

Removing outliers

Making up
missed values

Data collector Data cleaner

Importance Ranker Interaction Ranker

Machine learning algorithm library
Performance

counter database

Fig. 4. Block Diagram of CounterMiner.

B. Data Cleaner

The outliers and missing values of events are the main

error sources of the collected data with MLPX. Data cleaner

replaces the outliers by normal values and fills in the missing

values. To evaluate the accuracy of the data cleaner, we take

the values of events collected by OCOE as golden references.

1) Replacing Outliers: To determine outliers, we first per-

form a rigorous statistic testing (see Section IV-C for the

testing tool) on the value distributions of all 229 events. We

find that, only for 100 events, their values follow Gaussian

distribution. We further investigate the value distributions

of the other 129 events and find they all show long tail

distribution but with different levels. In order to find out the

long tail distributions, we perform the statistic testing on them

using several different distribution functions such as logistic

and Gumbel (general extreme value - GEV) distributions. We

find the GEV distribution best fits the long tail distributions,

which has been confirmed by [15].

After knowing the value distributions of the events, we

design the criterion to replace the outliers. We employ a

general technique from data mining to determine outliers by

the following equation:

threshold = mean+ n× std (6)

where threshold is the criterion for replacing outliers, mean
and std are the mean value and the standard deviation of a

series of values of an event, respectively; n is a control variable

which needs to be determined according to the distribution or

user requirements such as the percentage of data within the

threshold. According to [42], if a data series obeys Gaussian

distribution, n equals 3.

Since the values of a large number of events do not obey

the Gaussian distribution but instead long tail distribution. We

need to determine n by controlling the percentage of data

within the threshold. In this study, we specify that 99% of the

collected data for events of a program are within the threshold

because there are not many outliers based on our confirmed

observation. Table I shows the percentage of data within the

threshold with different n values. We see that when n is 5,

the percentages of data within the threshold for all programs

exceed 99%, we therefore set n to 5.

When an outlier is found, we use the median value of the

interval where the outlier locates to replace the outlier. The

interval length is calculated as follows.

L =
Max(TSei)−Min(TSei)

Roundup(Sqrt(Count(TSei)), 0)
(7)

616

Authorized licensed use limited to: University of Southern California. Downloaded on September 27,2021 at 23:16:55 UTC from IEEE Xplore. Restrictions apply.

Benchmarks n=3 n=5 Benchmarks n=3 n=5
wordcount 98.8% 99.3% DataAnalytics 99.3% 99.8%
pagerank 98.6% 99.4% DataCaching 99.1% 99.8%
aggregation 99.3% 99.8% DataServing 99.4% 99.8%
join 98.9% 99.8% GraphAnalytics 99.2% 99.8%
scan 99.3% 99.8% In-mAnalytics 99.2% 99.8%
sort 98.9% 99.5% MediaStreaming 99.3% 99.8%
bayes 98.6% 99.8% WebSearch 98.8% 99.7%
kmeans 99.1% 99.8% WebServing 99.1% 99.5%

TABLE I
THE COVERAGE RATE WITH DIFFERENT VALUES OF n.

with Max(TSei) and Min(TSei) the maximum and mini-

mum values in TSei, respectively, Count(TSei) the number

of values in TSei, Sqrt the square root, and Roundup the

round up value.

2) Filling in Missing Values: To fill in missing values, we

first classify the event values into two categories: zero values

and none-zero values. Based on our observation, zero values

are highly likely to be missing values. However, it is still

possible that the values of a certain event at some points

are indeed zeros. It is therefore difficult to distinguish them

from the missing values. To address this issue, we check the

maximum and minimum values of the event in the past. If the

minimum value is zero and the maximum value is less than

0.01, we consider that the zero value for the event is not a

missing value. The rationale is that the maximum value of an

event is only 0.01 which is very close to zero, and even the

actual value is not zero, the error would not be high.

For the none-zero value category, we employ KNN (K-
Nearest Neighbor) algorithm [43] to fill in missing values. For

example, a series of data for ICACHE.MISSES is as follows:

{X1, X2, X3, X4, X5, 0, X7, ..., Xi, ..., Xm} (8)

where Xi is the ith value of ICACHE.MISSES, m is the

total number of values, and 0 is the missing value. We

use KNN regression to calculate the missing value and it is

represented by the average value of the k nearest neighbors.

The determination of k is important because it affects the

accuracy. In this study, we tried several values from 3 to 8

based on [42] and find that k = 5 is accurate enough to

represent the missing value.

C. Importance Ranker

In order to quantify the importance of events with respect to

IPC (Instructions Per Cycle), an accurate performance model

needs to be constructed. The inputs of the model are event

values and the output is IPC, which can be represented by:

IPC = perf(e1, e2, ..., ei, ..., en) (9)

where ei is the value of the ith event, and n is the total number

of events. As discussed before, n is typically larger than 100

and up to 1423 for modern processors. For the processors

used in this paper, n is 229. It is extremely challenging

to build an accurate performance model with such a large

number of input parameters. Analytical modeling techniques

are not suitable for this case because they allow only a few

parameters (e.g., less than 5). Moreover, analytical models are

not accurate when dealing with complex cases. Statistical mod-

eling techniques are either not accurate with high dimensional

inputs because they make an unrealistic assumption that the

relationship between the input parameters are linear. However,

complex nonlinear relationships typically exist between events

of modern processors.

To solve this problem, machine learning techniques are

applied to construct accurate models with high dimensional

inputs. To mitigate over-fitting, we use an ensemble learning

algorithm, Stochastic Gradient Boosted Regression Tree (SG-

BRT) [44], to construct the model. The key insight is that

SGBRT combines a number of tree models in a stagewise

manner, where each one reflects a part of the performance.

The final model is called ensemble model. With performance

model constructed, we can leverage the model to quantify the

importance of events and their interactions. Clearly, a more

accurate performance model results in more precise event

importance quantification.

For a single tree T in an ensemble model, one can use

I2j (T) as a measure of importance for each event ej , which

is based on the number of times ej is selected for splitting a

tree weighted by the squared improvement to the model as a

result of each of those splits [45]. This measure of importance

is calculated as follows:

I2j (T) = nt ·
nt∑
i=1

P 2(k), (10)

where nt is the number of times ej is used to split tree T ,

and P 2(k) is the squared performance improvement to the

tree model by the kth split. In particular, P (k) is defined as

the relative IPC error which is (IPCk − IPCk−1)/IPCk−1

after the kth split. If ej is used as a splitter in R trees in the

ensemble model, the importance of ej to the model equals:

I2j =
1

R

R∑
m=1

I2j (Tm). (11)

To make the results intuitive, the importance of an event is

normalized so that the sum across all events adds up to 100%.

A higher percentage indicates stronger influence of the event

on performance.

After the importance of each event with respect to per-

formance is obtained, we rank them in a descending order.

Then, we remove the 10 least important events and take the

remainders as input parameters to construct a performance

model by using the SGBRT algorithm again. We conduct the

same procedure on the new model to quantify the importance

of the remaining events and rank them. This procedure may

iteratively repeat several times until we obtain the Most Accu-

rate Performance Model (MAPM) for a program and we call

this procedure Event Importance Refinement (EIR). The event

importance obtained by MAPM is the most accurate [45].

D. Interaction Ranker

After we obtain a set of important events, we construct a

linear regression model per pair of the events and consider

617

Authorized licensed use limited to: University of Southern California. Downloaded on September 27,2021 at 23:16:55 UTC from IEEE Xplore. Restrictions apply.

the residual variance of the model as an indication for inter-

action intensity. The intuition is that if two microarchitecture

events are orthogonal (i.e., they do not interact), the residual

variance will be small because the linear model will be able

to accurately predict the combined effect of both events.

If on the other hand, the microarchitecture events interact

substantially, this will be reflected in the residual variance

being significantly larger than zero, because the linear model

is unable to accurately capture the combined effect of the

event pair. The linear regression model is trained for each

pair of important events by setting the values of all other

events to their respective means. This process is repeated for

each possible event pair. The residual variance or interaction

intensity for a particular event pair is computed as:

v =

n∑
i=1

(pi − p)2, (12)

where pi is the performance (IPC) predicted by the linear

regression model, p is the observed performance, and n is

the number of predictions. Zero indicates that there is no

interaction between two microarchitecture events, and a higher

value indicates a stronger interaction.

To indicate the importance of interactions among all possi-

ble pairs, we normalize interaction intensity against the other

pairs as follows:

Ii =

⎛
⎜⎜⎝

vi
n∑

j=1

vj

⎞
⎟⎟⎠× 100%, (13)

where Ii is the importance of the ith event-pair interaction

and vi is the ith event-pair interaction intensity. After the

normalization, we can tell how much more/less important an

event pair is compared to another event pair, — reflecting the

relative interaction intensity of event pairs.

IV. EXPERIMENTAL METHODOLOGY

A. Experimental Cluster

Our experimental cluster consists of four Dell servers, one

serves as the master node and the other three serve as slave

nodes. Each server is equipped with 12 Intel(R) Xeon(R) CPU

E5-2630 v3 @ 2.40GHz eight-core processor with Haswell-

E microarchitecture and 64GB PC3 memory. The OS of

each node is SUSE Linux Enterprise Server 12. The OS of

the whole cluster is Mesos1.0. Although our experimental

cluster is small compared to a cloud platform, we believe that

evaluating CounterMiner in this environment is still sufficient,

because it is essentially a performance analysis methodology.

In a real cloud platform, CounterMiner can easily work with

the Google Wide profiler (GWP) to provide more meaningful

results. In addition, it can be integrated with cluster manage-

ment tools such as Quasar [46] and other cloud computing

researches such as [47]–[49].

Benchmarks Framework Input data
wordcount Spark 2.0 generated by RandomTextWriter.
pagerank Spark 2.0 hyperlinks with Zipfian.
aggregation Spark 2.0 hyperlinks with Zipfian.
join Spark 2.0 hyperlinks with Zipfian.
scan Spark 2.0 hyperlinks with Zipfian.
sort Spark 2.0 generated by RandomTextWriter.
bayes Spark 2.0 words with Zipfian.
kmeans Spark 2.0 numbers with Gaussian.

DataAnalytics Hadoop a Wikimedia dataset.
DataCaching Memcached a Twitter dataset.
DataServing Cassandra a YCSB dataset.
GraphAnalytics GraphX a Twitter dataset.
In-mAnalytics SparkMLlib a move-rating dataset.
MediaStreaming Nginx a synthetic video dataset.
WebSearch Apache Solr a set of crawled websites.
WebServing Elgg generated by Faban.

TABLE II
THE EXPERIMENTED BENCHMARKS.

0
0.5

1
1.5

2
2.5

3
3.5

1 39 77 11
5

15
3

19
1

22
9

26
7

30
5

34
3

38
1

41
9#

of
 u

 o
ps

(x
10

3)

measurement samples

OCOE
MLPX
MLPX-CLN

0
10
20
30
40
50
60

1 35 69 10
3

13
7

17
1

20
5

23
9

27
3

30
7

34
1

37
5

40
9

of

 m
is

se
s

measurement samples

OCOE
MLPX
MLPX-CLN

Outliers are replaced Missing values are filled in

Fig. 5. The event cleaning examples. (a) The replaced outliers in the time
series of IDQ.DSB UOPS. (b) The filled in values in the time series of
ICACHE.MISSES. MLPX-CLN represents the cleaned time series.

0%
10%
20%
30%
40%
50%

WDC PGR AGG JON SCN SOT BAY KME AVG

er
ro

r RAW CLN

Fig. 6. The measurement error comparison between before and after our data
cleaning approach is employed.

B. Benchmarks

We employ CloudSuite 3.0 [35] and select eight programs

from HiBench with version of Spark 2.0 [36] (a.k.a ”Spark-

Bench”) to evaluate CounterMiner in this study. CloudSuite

3.0 is a benchmark suite for cloud services and it consists

of eight applications based on their popularity in today’s

datacenters. HiBench with Spark 2.0 consists of a broad set

of MapReduce-like programs implemented by Spark 2.0. The

benchmarks are listed in Table II. The benchmarks in Cloud-

Suite use different frameworks while the ones in HiBench

employ the same framework but represent four categories of

applications including websearch, SQL, machine learning, and

microbenchmarks.

C. Modeling Tools

We use Python, a freely available high-level programming

language, to perform our SGBRT modeling and KNN model-

ing. The Python version is 2.7 and we use scikit-learn 0.19.0
which is a machine learning algorithm library implemented

in Python to construct our performance models. To perform a

rigorous statistic testing for the value distribution of events,

we employ SciPy [50] which is an open-source software

for mathematics, science, and engineering. In which, we use

618

Authorized licensed use limited to: University of Southern California. Downloaded on September 27,2021 at 23:16:55 UTC from IEEE Xplore. Restrictions apply.

Abbr. Event Description
ISF ILD STALL.IQ FULL stall cycles due to IQ is full.

ISL ILD STALL LCP counts cycles where the decoder is stalled on an inst with a length changing prefix (LCP).

BRE BR INST EXEC.ALL BRANCHES counts all near executed branches (not necessarily retired).

IPD INST RETIRED.PREC DIST Precise inst retired event with HW to reduce effect of PEBS shadow in IP distribution.

BRB BR INST RETIRED.ALL BRANCHES counts the number of retired branch instructions.

BMP BR MISP RETIRED.ALL BRANCHES mispredicted macro branch instructions retired.

PI3 PAGE WALKER LOADS.ITLB L3 counts the number of extended page table walks from ITLB hit in the L3.

ITM ITLB MISSES.WALK DURATION counts the number of cycles while PMH (page miss handler) is busy with the page walk.

DSP DTLB STORE MIS.PDE CACHE MIS DTLB store misses with low part of linear-to-physical address translation missed.

DSH DTLB STORE MIS.STLB HIT store ops that miss the first TLB level but hit the second and do not cause page walks.

MMR MEM LD UOPS L3 MIS.R M Retired load uops whose data source was remote DRAM.

MUL MEM UOPS RETIRED.ALL LOADS Load uops retired to architected path with filter on bits 0 and 1 applied.

URA UOPS RETIRED.ALL Counts the number of micro-ops retired..

URS UOPS RETIRED.RETIRE SLOTS counts the number of retirement slots used in each cycle.

MCO MACHINE CLEARS.MEMORY ORDERING counts the number of machine clears due to memory order conflicts.

MSL MEM UOPS RETIRED.STLB MISLD load uops with true STLB (second level TLB) miss retired to architected path.

MLL MEM UOPS RETIRED LOCK LOAD load uops with locked access retired to architected path.

PDM PAGE WALKER LOADS.DTLB MEMORY number of DTLB page walker hits in memory.

TFA TLB FLUSH.STLB ANY count number of STLB (second TLB) flush attempts.

LAA LD BLKS PARTIAL.ADDR ALIAS false dependencies in MOB (memory order buffer) due to partial compare on address.

LSF LD BLKS.STORE FORWARD loads blocked by overlapping with store buffer that cannot be forwarded.

BRC BR INST RETIRED.CONDITIONAL counts the number of conditional branch instructions retired.

BNT BR MISP RETIRED.NEAR TAKEN number of near branch instructions retired that were mispredicted and taken.

LMH MEM LD UOPS L3 MIRE.R H retired load uops whose data sources were a remote HitM responses.

UEP UOPS EXECUTED PORT.PORT 0 cycles during which uops are dispatched from the Reservation Station (RS) to port 0 (on the per-thread basis).

MLH MEM LOAD UOPS RETIRED.L1 HIT retired load uops with L1 cache hits as data sources.

MST MEM UOPS RETIRED.STLB M ST store uops with true STLB miss retired to architected path.

IM4 ITLB MISSES.WALK COMPLD 4K code miss in all TLB levels causes a page walk that completes (4K).

IMC ITLB MISSES.WALK COMPLD misses in all ITLB levels that cause completed page walks.

LHN LD UOPS L3 H R.X N retired load uops which data sources were hits in L3 without snoops required.

CAC CYC ACT.CYC LDM PEND cycles with pending memory loads.

C2P CYC ACT.STAL L2 PEND number of missed L2.

LUO LSD.UOPS Number of uops delivered by the LSD.

PLM PAGE WALKER LD.DTLB MEM number of DTLB page walker loads from memory.

OTS OTHER ASSISTS.AVX TO SSE number of transitions from AVX-256 to legacy SSE when penalty applicable.

I4U IDQ.ALL MITE CYCLES 4 UOPS counts cycles MITE is delivered four uops. Set Cmask = 4.

ORA OFFCORE REQUESTS.ALL DATA RD data read requests sent to uncore (demand and prefetch).

BAA BACLEARS.ANY number of front end re-steers due to BPU (Branch Prediction Unit) misprediction.

LRC L2 RQSTS.CODE RD MISS number of instruction fetches that missed the L2 cache.

MIE MOVE ELIMINATION.INT ELIMINATED number of integer move elimination candidate uops that were eliminated.

ORO OFCORE REQ OUSTAND.AL D RD Offcore outstanding cacheable data read transactions in SQ (Super Queue) to uncore.

IDU IDQ.DSB UOPS the number of of uops delivered to IDQ (instruction dispatch queue) from DSB (decode stream buffer) path.

LRA L2 RQSTS.ALL RFO counts all L2 store RFO (read for ownership) requests.

TABLE III
EVENT NAME AND DESCRIPTION FOR THOSE APPEARED IN THE 10 MOST IMPORTANT EVENT LIST OF EACH BENCHMARK.

37% 35% 41%
55% 50% 44%

54%

5.30%
17.08%

6.80%
23.61% 28.96%

13.38%

29.39%

0%
10%
20%
30%
40%
50%
60%

10 16 20 24 28 32 36

er
ro

r

The number of events collected simultanesously

RAW

Fig. 7. The measurement error comparison between before and after our data
cleaning approach is employed when different number of events are measured
simultaneously by MLPX.

scipy.stats.anderson to perform Anderson-Darling test for data

coming from a particular distribution.

V. RESULTS AND ANALYSIS

A. Error Reduction

Figure 5 shows the cleaning results for the outlier and miss-

ing value examples shown in Figure 2. MLPX-CLN represents

the cleaned times series for the corresponding events. The

benchmark is wordcount in these two examples. Figure 5 (a)

illustrates that the outliers are correctly replaced and Figure 5

(b) shows that most missing values are filled in.

Figure 6 compares the measurement errors before (blue

bars) and after (red bars) applying our data cleaning techniques

on the times series of ICACHE.MISSES for the sixteen

benchmarks. We see that our data cleaner significantly reduces

the errors caused by MLPX. In particular, the average error is

reduced from 28.3% to 7.7% thanks to data cleaning.

Figure 7 illustrates the behavior of the data cleaner when we

increase the number of events measured by MLPX at a time.

We made several interesting observations. 1) The data cleaner

significantly reduces the errors caused by MLPX in each case.

With 10 events, the error is reduced to only 5.3%. 2) The

data cleaner accurately follows the error trend when number

of simultaneously measured events increases. 3) Although no

error is larger than 30% in all cases, some errors are high such

as 23.6% in the case of 24 events. This indicates that we can

not measure too many (e.g., 24) events at the same time even

with data cleaner. As a general recommendation, the number

should not be larger than 20.

B. Important Events

As mentioned in Section III-C, the event importance ob-

tained by MAPM (the most accurate performance model) is

the most accurate [45]. We therefore perform the EIR (event

importance refinement) procedure aiming to get MAPM before

619

Authorized licensed use limited to: University of Southern California. Downloaded on September 27,2021 at 23:16:55 UTC from IEEE Xplore. Restrictions apply.

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%

229
219
209
199
189
179
169
159
149
139
129
119
109
99
89
79
69
59
49
39
29
19
9

er
r

wordcount kmeans
pagerank aggregation
join scan
bayes sort
avg

Fig. 8. The error variation of the models when we reduce the number of
events used as their inputs for HiBench benchmarks. The X axis represents
the numbers of events.

we show the results for important microarchitecture events.

During EIR, we employ a number of training examples (m) to

train the model and use one-quarter of m unseen test examples

to evaluate the model accuracy. The error of the models is

defined as follows.

err =
|IPCmeas − IPCpred|

IPCmeas
× 100% (14)

where IPCmeas is the measured IPC of a program and

IPCpred is the IPC predicted by the performance model.

Figure 8 show the error variation when we perform the

EIR for HiBench benchmarks. We see that considering more

events may not necessarily result in higher performance model

accuracy. For the experimented processors and benchmarks,

the average error is 14% when we take all 229 events as the

model inputs, while the lowest average error is only 6.3%

when around 150 events are taken as the model input parame-

ters. This indicates that the exhausted list of events of modern

processors may contain a large number of noisy events.

Processor vendors could leverage the proposed approach to

systematically select proper events for their processors.

However, the accuracy of performance models decreases

when we further reduce the number of input events of the

models after they achieve the highest accuracy (e.g., 150

events in this study), as shown in Figure 8. When the number

of events decreases to 99, the average performance model error

increases to 9.6%, but is still very low. When we decrease

the number to 59, the average error further increases to 14%

which is the same as that of models with all 229 events. This

implies that using only 59 events can achieve the same results

of performance analysis by using 229 events. The benchmarks

from CloudSuite show the similar results. We therefore do not

show the figure due to limited space.

Figure 9 and 10 show the importance ranking of events

obtained by MAPM for the benchmarks from HiBench and

from CloudSuite, respectively. The Y axis represents event

importance and the X axis denotes the abbreviations of events

which are shown in Table III. Due to space limit, we show

the 10 most important events for each benchmark.We highlight

four key findings as follows.

First, the importance of one to three events of a bench-
mark is significantly higher than that of other events of the

same benchmark, and this is true for all benchmarks, —

both HiBench and CloudSuite. For example, the three most

important events of the benchmark wordcount are ISF, BRE,

and ORA. Their importance exceeds 5% while those of the

other events are less than 2.2%. We call this phenomenon

one-three significantly more important law (one-three SMI
law). Note that this is different from Pareto principle because

the accumulated importance of 20% of events is not around

80%. The one-three SMI law indicates that there is always

an opportunity to optimize cloud programs significantly more

efficiently by first tuning the parameters related to the top one

to three events than by tuning other ones. We will demonstrate

this in a case study in Section V-D.

Second, the importance rank of events may vary across
benchmarks. For instance, the most important event for word-
count is ISF while that for pagerank is BRE. This indicates

that different benchmarks have different characteristics at the

microarchitecture level.

Third, the common most important events for all the exper-

imented cloud benchmarks are related to instruction queue,

branch, TLBs (instruction TLB, data TLB, and second level

TLB), memory load, and remote memory or cache access.

The second insight indicates that application-specific tuning is

needed at application level whereas the third one indicates that

common optimization approaches for different applications are

also effective at lower-level, e.g., microarchitecture or com-

piler. For example, enlarging the length of instruction queue

of processors used in cloud or enhancing the performance of

the memory sub-system of cloud servers may improve the

performance of most cloud services significantly because our

results show that ISF (stall cycles due to instruction queue

is full) is the most important event for most experimented

benchmarks.

Fourth, we surprisingly find that the eight benchmarks from
HiBench show more diversity than those from CloudSuite
based on the 10 most important events for each benchmark.

Only four important events (MUL, MLL, DSP, and DSH)

of CloudSuite benchmarks are not included in those of the

eight HiBench benchmarks while thirteen important events

(ORA, URA, URS, BRC, BAA, LRC, IMC, IM4, CAC, ORO,

IDU, LRA, and OTS) of the HiBench programs are not in

those of the eight CloudSuite benchmarks. The common belief

is that, the benchmarks from CloudSuite should be more

diverse than the ones from HiBench because the CloudSuite

benchmarks use different frameworks such as Hadoop, Spark,

and MemCached while the HiBench benchmarks only use

Apache Spark. Our counter-intuitive results indicate that, to

achieve application diversity, different frameworks may not be

more important than the algorithms and codes of benchmarks.

Moreover, our results indicate that more diverse benchmarks

need to be included in CloudSite3.0.

C. Important Event Interactions

Figure 11 and Figure 12 show the interaction intensity ranks

for the eight Spark benchmarks from HiBench and all the

benchmarks from CloudSuite, respectively. Again, we only

show the 10 most important interactions of event pairs. The Y

axis represents the importance of interaction intensity of event

pairs and the X axis denotes the event pairs.

620

Authorized licensed use limited to: University of Southern California. Downloaded on September 27,2021 at 23:16:55 UTC from IEEE Xplore. Restrictions apply.

0%
1%
2%
3%
4%
5%
6%

IS
F

BR
E

O
RA

IP

D

BR
B

BM
P

M
SL

U

RA

U
RS

IT

M

BR
E

IS
F

BR
B

LM
H

BM

P
IT

M

PI
3

M
CO

BR

C
TF

A

IS
F

BR
E

BR
B

M
SL

BA

A

M
M

R
PI

3
BM

P
IP

D

M
CO

BR

E
LR

C
IS

F
BR

B
LM

H

IP
D

BM

P
IM

C
IM

4
IT

M

BR
E

IS
F

LM
H

BR

B
M

SL

PI
3

M
M

R
BM

P
M

IE

CA
C

O
RO

ID

U

IS
F

LR
A

BR

E
BR

B
BM

P
LM

H

M
SL

M

ST

BR
E

IS
F

PI
3

M
SL

BR

B
IP

D

M
ST

TF

A

M
M

R
LM

H

IS
F

BR
E

IP
D

BR

B
IM

T
M

SL

PI
3

O
TS

BM

P
M

CO

wordcount pagerank aggregation join scan sort bayes kmeans
6.1% 6.7% 6.6% 7.6%

Fig. 9. The importance rank of the eight Spark benchmarks from Hibench when we employ the events which can construct the most accurate performance
models. Y axis represents the importance of events and the X axis denotes the abbreviations of the events.

0%
2%
4%
6%

IS
F

B
R

B

B
R

E
IP

D

M
M

R

M
SL

LM

H

M
U

L
M

ST

M
LL

IS

F
B

R
B

IP

D

B
R

E
M

SL

B
M

P
M

M
R

LM

H

M
ST

M

LL

IS
F

PI
3

B
R

E
B

R
B

IP

D

M
M

R

M
SL

LM

H

IT
M

B

M
P

IS
F

B
R

E
B

R
B

M

SL

D
SP

TF

A

M
M

R

D
SH

M

ST

B
M

P
B

R
E

IS
F

B
R

B

M
SL

IP

D

M
M

R

B
M

P
PI

3
LM

H

M
LL

B

R
E

IS
F

B
R

B

M
M

R

IP
D

M

SL

LM
H

B

M
P

M
C

O

PI
3

IS
F

M
SL

IP

D

B
R

E
M

M
R

B

M
P

B
R

B

M
ST

LH

N

M
LL

M

SL

IS
F

B
M

P
M

M
R

LH

N

IP
D

IS

L
B

R
E

M
LL

LM

H

DataAnalytics DataCaching DataServing GraphAnalytics In-mAnalytics MediaStreaming WebSearch WebServing
6.4%

Fig. 10. The importance rank of the eight benchmarks from CloudSuite when we employ the events which can construct the most accurate performance
models. Y axis represents the importance of events and the X axis denotes the abbreviations of the events.

0%
2%
4%
6%
8%

10%
12%
14%
16%

BR
B-

BM
P

O
R

A
-B

R
B

U
R

A
-U

R
S

BR
B-

IT
M

O

R
A

-B
M

P
IS

F-
BR

B
BR

B-
U

R
A

BR

E-
BR

B
O

R
A

-IT
M

IS

F-
BR

E
BR

B-
BM

P
BR

E-
IS

F
BR

E-
BR

B
BR

E-
BM

P
IS

F-
BR

B
IS

F-
BM

P
BR

B-
BR

C

BR
E-

PI
3

BR
E-

IT
M

IS

F-
IT

M

BR
E-

M
SL

IS

F-
M

SL

M
SL

-B
M

P
M

SL
-B

A
A

M

M
R

-B
M

P
IS

F-
BR

E
M

SL
-P

I3

BR
B-

BM
P

BR
B-

M
SL

BR

E-
BR

B
BR

B-
BM

P
BR

E-
BR

B
IS

F-
BM

P
IS

F-
BR

B
BR

E-
IS

F
BR

E-
BM

P
LR

C
-B

R
B

LR
C

-B
M

P
BR

E-
IP

D

BM
P-

IM
C

IS

F-
BM

P
IS

F-
LM

H

BR
E-

BM
P

LM
H

-M
M

R

LM
H

-B
M

P
BR

E-
LM

H

BR
E-

IS
F

M
M

R
-B

M
P

IS
F-

M
M

R

BR
E-

M
M

R

IS
F-

M
ST

LR

A
-M

ST

O
R

O
-M

ST

BR
E-

M
ST

ID

U
-M

ST

BM
P-

LM
H

LR

A
-B

R
E

BM
P-

M
ST

O

R
O

-L
R

A

BR
E-

M
SL

IS

F-
BR

B
BR

E-
BR

B
BR

E-
IS

F
PI

3-
BR

B
IS

F-
PI

3
BR

E-
PI

3
M

SL
-M

ST

M
M

R
-L

M
H

BR

B-
LM

H

BR
E-

LM
H

BR

B-
BM

P
IS

F-
BM

P
IS

F-
BR

B
IT

M
-B

M
P

BR
B-

IT
M

BR

E-
BR

B
BR

E-
BM

P
PI

3-
BM

P
M

SL
-B

M
P

BR
B-

PI
3

kmeans bayes scan sort join aggregation pagerank wordcount

32% 20% 26% 28% 28% 23% 28% 17% 16%

Fig. 11. The interaction rank of the important event pairs for the eight Sark benchmarks from HiBench. The Y axis represents the importance of interaction
intensity of event pairs. The X axis represents abbreviations of event pairs. XXX-YYY denotes an event pair.

0%
10%
20%
30%

IS
F-

BR
B

IS
F-

M
LL

BR

B-
M

LL

M
SL

-M
LL

BR

B-
M

SL

M
M

R-
…

BR
B-

BR
E

M
U

L-
M

LL

IS
F-

BR
E

BR
B-

LM
H

BR

B-
BM

P
BR

B-
BR

E
IS

F-
BR

B
BR

E-
BM

P
IS

F-
BM

P
BR

B-
M

SL

IS
F-

BR
E

M
SL

-B
M

P
BR

E-
M

SL

BR
E-

M
LL

BR

B-
BM

P
BR

E-
BR

B
IS

F-
BM

P
IS

F_
BR

B
BR

E-
BM

P
PI

3-
BR

B
PI

3-
BM

P
IT

M
-B

M
P

IS
F-

BR
E

BR
B-

IT
M

BR

B-
BM

P
BR

E-
BR

B
BR

B-
PI

3
IS

F-
BR

B
BM

P-
PI

3
BR

E-
BM

P
IS

F-
BM

P
BR

E-
PI

3
IS

F-
PI

3
BR

E-
IS

F
D

SP
-B

M
P

BR
E-

BM
P

IS
F-

BM
P

BR
B-

BM
P

BR
E-

BR
B

D
SP

-D
SH

M

SL
-B

M
P

IS
F-

BR
B

BR
B-

D
SP

BR

E-
D

SP

BR
B-

BM
P

BR
E-

BR
B

BR
E-

BM
P

BR
B-

PI
3

IS
F-

BR
B

BM
P-

PI
3

BR
E-

PI
3

BR
E-

IS
F

IS
F-

PI
3

IS
F-

M
M

R
BM

P-
BR

B
BR

B-
M

LL

BR
E-

BR
B

BM
P-

M
LL

BR

E-
BM

P
BR

E-
M

LL

M
SL

-B
RB

M

SL
-B

M
P

IS
F-

BR
B

M
SL

-B
RE

BM

P-
BR

B
IS

F-
BR

B
IS

F-
BM

P
IS

L-
BR

B
BM

P-
M

LL

BR
B-

M
LL

IS

F-
IS

L
BM

P-
IS

L
BM

P-
LH

N

M
SL

-B
M

P

DataAnalytics
36%

DataCaching DataServing In-mAnalytics GraphAnalytics M-Streaming WebSearch WebServing
35% 33% 64% 31%

Fig. 12. The interaction rank of the important event pairs for the benchmarks from CouldSuite. The Y axis represents the importance of interaction intensity
of event pairs. The X axis represents abbreviations of event pairs. XXX-YYY denotes an event pair.

0%
2%
4%
6%
8%

10%
12%
14%

IS
F-

dm
m

IS

F-
m

m
f

M
SL

-m
m

f
M

SL
-ic

s
IT

M
-d

m
m

IT

M
-m

m
f

BR
B-

kb
m

BR

E-
kb

m

IS
F-

bb
s

IP
D

-m
m

f
TF

A
-e

xc

PI
3-

ex
c

BM
P-

ex
c

BR
C-

dp
l

M
CO

-b
bs

IS

F-
ex

m

IS
F-

dp
l

LM
H

-e
xm

BM

P-
rd

m

IT
M

-m
m

f
BR

E-
m

m
f

BA
A

-m
m

f
PI

3-
m

m
f

BR
B-

m
m

f
M

M
R-

m
m

f
M

SL
-m

m
f

IP
D

-m
m

f
M

M
R-

kb
f

BA
A

-n
w

t
PI

3-
ss

b
IT

M
-ic

s
IT

M
-s

fb

BR
E-

rd
m

IS

F-
kb

m

IP
D

-d
pl

BR

E-
kb

m

IM
4-

ic
s

IM
4-

kb
m

BR

E-
dm

m

IP
D

-m
m

f
BR

E-
dm

m

BR
E-

m
m

f
M

M
R-

m
m

f
M

M
R

-ic
s

CA
C-

dm
m

CA

C-
m

m
f

M
SL

-k
bm

IS

F-
kb

m

BR
E-

bb
s

BR
B-

m
m

f
O

RO
-b

bs

ID
U

-n
w

t
M

SL
-rd

m

O
RO

-e
xm

IS

F-
nw

t
IS

F-
m

m
f

IS
F-

kb
m

M

SL
-n

w
t

LM
H

-b
bs

M

ST
-k

bf

PI
3-

ss
b

M
ST

-n
w

t
IS

F-
ss

b
M

SL
-s

sb

BR
E-

dp
l

M
SL

-d
pl

IP

D
-n

w
t

IS
F-

rd
m

M

SL
-e

xc

PI
3-

bb
s

BR
E-

ex
m

PI

3-
ex

c
M

SL
-e

xm

M
SL

-k
bf

BM

P-
kb

f
BM

P-
dp

l
M

SL
-e

xc

BM
P-

dm
m

M

CO
-d

pl

PI
3-

dp
l

wordcount pagerank aggregation join scan sort bayes kmeans

34% 24% 26% 15%

Fig. 13. The interaction rank of spark configuration parameter and event pairs. The Y axis represents the importance of the interaction of configuration
parameter and event pairs and the X axis denotes the abbreviations of the parameter and event pairs. In XXX-YYY, XXX represents an event, and YYY
represents a configuration parameter.

First, we see that all benchmarks have one or two dominant

pairs of events which interact with each other more strongly

than other event pairs. This indicates that we can focus on

analyzing the dominant interaction pairs with limited time

budget. Second, the branch related events interact strongly

with other events. In the 160 most important interaction

pairs for the 16 benchmarks (10 most important interaction

pairs for each), one branch related event is involved in 98

interaction pairs. Two branches related events are involved

in 36 interaction pairs. It means that 83.4% of the 160

most important interaction pairs contain branch related events.

These results imply that branch related events are critical

for cloud computing environment. Moreover, the pair BRB-

BMP (see Table III) appears in 12 of the 16 experimented

621

Authorized licensed use limited to: University of Southern California. Downloaded on September 27,2021 at 23:16:55 UTC from IEEE Xplore. Restrictions apply.

benchmarks and it is ranked as the most important inter-

action pair in 10 benchmarks (wordcount, pagerank, join,

kmeans, DataCaching, DataServing, In-memoryAnalytics, Me-
diaStreaming, WebSearch, and WebServing). This indicates the

number of successfully retired branch instructions (BRB) and

that of mispredicted but finally successfully retired branch

instructions (BMP) interact strongly in most benchmarks. This

is because a small BRB surely results in a small BMP and a

large BMP is definitely caused by a large BRB.

Another interesting phenomenon is that the the events in

dominant interaction pairs of benchmarks from CloudSuite

interact much more strongly with each other than those in the

dominant pairs of benchmarks from HiBench, see Figure 11

and Figure 12. This indicates that a benchmark containing

more software tiers results in stronger interactions between

events than a benchmark only implementing algorithms. For

example, WebServing has four tiers: the web server, the

database server, the memcached server, and the clients. The

interaction intensity of its dominant interaction pair achieves

64%. In contrast, GraphAnalytics only implements the pager-

ank algorithm on a Spark Library GraphX. The interaction

intensity of its dominant interaction pair is only 19%.

Knowing the importance of interaction pairs is important

for performance analysis. First, it can explain why one event

value changes significantly when the other event value is

changed in the same interaction pair. Second, it can explain

why performance variation is larger with the change of two

event values at the same time than that with the change of one

of two event values.

D. Case Study

This case study shows an usage example of CounterMiner.

After we know the important events, we first leverage our in-

teraction intensity quantification approach to determine which

configuration parameters of the Spark framework strongly

interact with the important events. We then tune two con-

figuration parameters, e.g., A and B, which tightly correlate

with a more important and a less important event, respectively.

Finally, we observe the performance variation when we tuning

the two parameters. Note that the default values of Spark

configuration parameters can be found at [51].

Figure 13 shows the importance of interactions between

a Spark configuration parameter and an event. The Spark

configuration parameter names and their abbreviations are

shown in Table IV. For each benchmark, we see that there

exists one or two pairs of a Spark configuration parameter and

an event whose interaction intensities are much stronger than

other pairs. This implies that we should tune the configuration

parameter in the strongest interaction pair first, which more

likely leads to more performance gain. Second, the most

important pair of interaction between a Spark configuration

parameter and an event varies across benchmarks. It is because

of different characteristics between benchmarks and indicates

that different configuration parameters should be tuned first

for different programs for efficiently optimizing performance.

Abbr. Configuration Parameter
bbs spark.broadcast.blockSize.

dpl spark.default.parallelism.

dmm spark.driver.memory.

exc spark.executor.cores.

exm spark.executor.memory.

ics spark.io.compression.snappy.blockSize.

kbf spark.kryoserializer.buffer.

kbm spark.kryoserializer.buffer.max.

mmf spark.memory.fraction.

nwt spark.network.timeout.

rdm spark.reducer.maxSizeInFlight.

sfb spark.shuffle.file.buffer.

ssb spark.shuffle.sort.bypassMergeThreshold.

TABLE IV
THE NAMES AND ABBREVIATIONS OF SPARK CONFIGURATION

PARAMETERS THAT ARE INTERACT WITH THE IMPORTANT EVENTS

STRONGLY.

0
50

100
150
200
250
300

2M 4M 8M 16M 32M

ex
ec

 ti
m

e (
s)

bbs

0
40
80

120
160
200

50
100
150
200
250
300
350
400
450
500

ex
ec

 ti
m

e
(s

)

nwt

Fig. 14. Execution time (in second) optimization for sort by tuning bbs and
nwt. bbs tightly correlates with the most important event (ORO) of sort. nwt
tightly correlates with the less important event I4U. See Table III for bbs and
nwt, Table IV for ORO and I4U.

... ...c1 c2 ci cn
t... ...c1 c2 ci cnt

... ...c1 c2 ci cn

... ...c1 c2 ci cn
...

v1
v2
vm

A B

Fig. 15. An illustration of profiling times.ci denotes the value of the ith

configuration parameter; t represents the execution time of a benchmark; vm
denotes the mth value of a certain event.

We study an example to demonstrate how to optimize

the performance of Spark programs by using our event im-

portance quantification. As shown in Figure 13, the most

important interaction pair of benchmark sort is ORO-bbs

and Figure 9 shows that ORO is the most important event

of sort. Looking at Table IV, we know bbs corresponds

to spark.broadcast.blockSize. We then choose an event not

in the 10 most important event list and find the Spark

configuration parameter that is tightly correlated with it.

In this example, we choose I4U and the corresponding

configuration parameter is nwt (spark.network.timeout). We

tune spark.broadcast.blockSize and spark.network.timeout sep-

arately and compare the performance variation. Figure 14

shows the results. We see that, the execution time reduction is

significantly larger when tuning bbs than tuning nwt. Specifi-

cally, average execution time variation is 111.3% when tuning

bbs while that is only 29.4% by tuning nwt. These results

confirm that CounterMiner can indeed provide the “handle”

to users to optimize performance more quickly and efficiently.

Nevertheless, one may think that it is unnecessary to identify

the important parameters of Spark programs by using our

event importance quantification (method A). Instead, one can

quantify the importance of parameters directly by using our

importance ranker (method B). We argue that it is untrue,

because method B takes much longer time than method A.

We use Figure 15 to illustrate the two methods. To quantify

the importance of either configuration parameters or events, we

need to collect a number of training examples. For method B,

622

Authorized licensed use limited to: University of Southern California. Downloaded on September 27,2021 at 23:16:55 UTC from IEEE Xplore. Restrictions apply.

0%
2%
4%
6%

ISF

PI3

BR
B

C
R

X

IPD

M
LL

M
U

L

M
SL

BN
T

BR
E

BR
E

L2H

L2R

D
SP

L2C

TFA

L2A

L2M

L2S

M
SL

DataCaching+DataCaching DataCaching+GraphAnalytics
10.1%

Fig. 16. The importance rank of events for co-located workloads: ’Data-
Caching + DataCaching’ and ’DataCaching + GraphAnalytics’.

we have to run a benchmark k times with k different configu-

rations to collect k training examples because we can collect

the execution time of a program only after it completes its

execution. In contrast, for method A, we can collect m training

examples for an event during one execution of a benchmark

because we sample a number of values for the event during

one run of the benchmark with a certain configuration. Method

A therefore needs a much smaller number of benchmark runs

than method B.

Taking pagerank as an example, we have to run it 6000

times to collect 6000 training examples to build a performance

model with around 90% of accuracy by method B. Then we

identify the important configuration parameters. For method A,

we only run the benchmark 60 times to build a performance

model as a function of events with 90% of accuracy. To find

the tightly coupled configuration parameter and event pairs, we

need to additionally run the benchmark 1520 times. Therefore,

we need to run pagerank 1580 times in total to identify its

important configuration parameters by method A, which is

nearly only 1/4 as the time needed for method B.

E. Co-located Workloads

We now demonstrate how to use CounterMiner with co-

located benchmarks running on a shared cluster, which is a

typical scenario in cloud computing environment. We consider

two cases. 1) An application is submitted to the cluster to

run when the same application is running. 2) An application

is submitted to the cluster to run when another application

is running. These are two typical cases people use cloud

platforms. In this study, we use ’DataCaching + DataCaching’

and ’DataCaching + GraphAnalytics’ to demonstrate the first

and second case, respectively.

Figure 16 shows the importance ranking of events for

the two cases. Note that CounterMiner can not show the

importance ranking for individual benchmarks in this context

because hardware counters and events are shared resources

among co-located benchmarks. The left part shows the im-

portance ranking of events for ’DataCaching + DataCaching’.

Compared with Figure 9, we see that the most important event

is still ISF with the similar importance of 3.7%. However,

the importance order and events in the other top 9 important

event list of ’DataCaching + DataCaching’ are only slightly

different from those of ’DataCaching’. This indicates that

two ’DataCaching’ programs do not interfere with each other

severely.

In contrast, we see that the importance order of events and

events of ’DataCaching + GraphAnalytics’ are significantly

different from both of those of ’DataCaching’ and ’Graph-

Analytics’. This indicates that ’GraphAnalytics’ churns the

execution of ’DataCaching’ severely. More interestingly, 6 L2

cache related events are ranked in the top 10 important event

list for ’DataCaching + GraphAnalytics’. No L2 cache related

events have been in the 10 most events for both ’DataCaching’

and ’GraphAnalytics’. This indicates that the mixed running

of these two benchmarks cause a lot of L1 cache misses for

both instruction and data caches, which should be avoided.

As observed above, we see that CounterMiner can capture

not only significant churns but also small ones in the context

of co-located workloads running in cloud platforms.

VI. RELATED WORK

A. Counter Data Management and Analysis

Google recently developed a profiling infrastructure, named

Google-Wide Profiling (GWP), to provide performance in-

sights for cloud applications [7]. GWP employs a two-level

sampling technique (sample machines and sample time in-

tervals within a machine for profiling) to collect counter

data in Google data centers. Huck et al. first developed

a framework to manage performance data [28] and then

proposed to leverage statistics techniques such as clustering

to analyze the performance data of parallel machines [52].

Dong et al. proposed to use statistical techniques such as PCA

(Principle Component Analysis) to extract important features

from performance counters [53]. CounterMiner differs from

these studies with twofold: 1) CounterMiner proposes data

cleaning techniques to clean the counter data collected by

MLPX; 2) CounterMiner not only extracts important events

but also directly quantifies the importance of an event with

respect to performance. The related studies that use PCA

or random linear projection can implicitly tell the important

events as a form of principle components or projected metrics

but can not explicitly quantify how important an event is.

This hinders one to directly leverage the important events to

optimize application performance.

B. Error Reduction

The measurement errors caused by MLPX have been ob-

served for nearly two decades [29]–[31], [33], [34], [38],

[54]–[56] and several approaches were proposed to reduce

them. In MLPX, the values of unsampled time intervals of

an event are usually estimated by linear interpolating a value

between the predecessor and successor intervals. Mathur et
al. tried to develop a fine-grained estimation algorithm which

divides the time interval into several sub-intervals. They found

that performing a linear interpolation estimation for each

sub-interval results in better accuracy [38]. Weaver et al.
found that experimental setup significantly affects the accuracy

of measurements by hardware counters and they therefore

provided corresponding suggestions to reduce the errors [31].

Recently, Lim et al. propose a scheduling algorithm that

schedules n events on m counters (n > m) (vs. the tra-

ditional round-robin algorithm) to improve the measurement

accuracy [34]. The key idea is to monitor the most recent

three values of an event for determining whether another event

should be scheduled to monitor on a counter. If the values

of an event are not significantly different, another event will

623

Authorized licensed use limited to: University of Southern California. Downloaded on September 27,2021 at 23:16:55 UTC from IEEE Xplore. Restrictions apply.

be scheduled and vice-versa. Dimakoupoulou et al. found

that the measurement error of MLPX increases when Intel

hyper-thread is enabled. They then proposed a dynamic event

scheduling algorithm based on graph matching to reduce the

errors [33]. These studies try to reduce errors before or dur-
ing the performance measurement. In contrast, our approach

decreases the errors after the performance measurement has

been completed.

C. Counter Applications

1) Workload Characterization: Recently, Kanev et al.
leveraged hardware counters to profile a warehouse-scale

computer [14] and they found a number of interesting ob-

servations. For example, the instruction locality of emerging

cloud computing workloads is getting weaker and therefore

the instruction cache needs to be redesigned. Ferdman et
al. employed hardware counters to characterize a group of

scale-out workloads and released the CloudSuite [9]. Later

on, Yasin et al. performed a deep characterization by using

hardware counters for the CloudSuite [11], [12]. Jia et al.
use performance counters to characterize data analysis work-

loads in datacenters [8]. Wang et al. characterized big data

workloads for internet services [10]. Xiong et al. employed

performance counters to characterize the big data analysis in

city transportation industry and they proposed a transportation

big data benchmark suite [13].

2) Architecture and Compiler Optimization: Kozyrakis et
al. employ hardware counters and other tools to analyze how

large-scale online services use resources in data centers and

then they provide several insights for server architecture design

in data centers [22]. Chen et al. leveraged hardware-event sam-

pling to generate edge profiles to perform feedback-directed

optimization for application runtime performance [19]. Mose-

ley et al. used hardware counters to optimize compilers and

show speedups between 32.5% and 893% on selected regions

of SPEC CPU 2006 benchmarks [20].

3) Application Optimization: Chen et al. used hardware

counters to observe the cache behavior and then proposed

a task-stealing algorithm for multisocket multicore architec-

tures [5]. Blagodurov et al. developed a user level scheduling

algorithm for NUMA multicore systems under Linux by an-

alyzing information from hardware performance counters [6].

By observing the CPI (Cycle Per Instruction) collected from

hardware counters, Zhang et al. proposed a CPU performance

isolation strategy for shared compute clusters [15]. Tam et al.
firstly carefully analyzed the L2 cache miss rate behavior of

commodity systems and subsequently proposed an algorithm

to approximate the L2 miss rate curves which can be used

for online optimizations [16]. He et al. proposed to leverage

fractals to approximate the L2 miss rate curves with much

lower overhead [17]. Based on hardware counters, Blagodurov

et al. proposed an algorithm to manage the contention of

NUMA multicore systems [18].

Although CounterMiner does not focus on workload char-

acterization and optimization for architectures, compilers, and

applications, it provides an important step stone toward these

goals. After CounterMiner cleans the performance counter

data, these approaches can achieve better results. After Coun-

terMiner quantifies the importance of microarchitecture events,

these approaches can be more efficient.

VII. CONCLUSIONS

This paper proposes CounterMiner, a methodology that

enables the measurement and understanding of the big perfor-

mance data with three novel techniques: 1) using data cleaning

to improve data quality by replacing outliers and filling in

missing values; 2) iteratively quantifying, ranking and pruning

events based on the importance with respect to performance; 3)
quantifying interaction intensity between two events by resid-

ual variance. For various applications, experimental results

show that CounterMiner reduces the average error from 28.3%

to 7.7% when multiplexing 10 events on 4 hardware counters.

The real-world case study shows that identifying important

parameters of Spark programs by event importance is much

faster than directly ranking the importance of parameters.

ACKNOWLEDGMENT

The authors would also like to thank the anonymous re-

viewers for their valuable comments. This work is supported

by the national key research and development program under

Grant No. 2016YFB1000204, Shenzhen Technology Research

Project (Grant No. JSGG20160510154636747), outstanding

technical talent program of CAS, and NSFC under (Grant

No. 61672511 and 61702495). The research is also partially

supported by the National Science Foundation grants NSF-

CCF-1657333, NSF-CCF-1717754, NSF-CNS-1717984, and

NSF-CCF-1750656. Zhibin Yu is the corresponding author.

Contact: zb.yu@siat.ac.cn.

REFERENCES

[1] I. Coorporation, “Intel 64 and ia-32 architectures
developer’s manual,” 2017. [Online]. Available:
https://www.intel.com/content/www/us/en/architecture-and-technology/
64-ia-32-architectures-software-developer-manual-325462.html

[2] A. Coorporation, “Arm cortex-a53 mpcore processor technical reference
manual,” 2014. [Online]. Available: http://infocenter.arm.com/help/
topic/com.arm.doc.ddi0500d/DDI0500D cortex a53 r0p2 trm.pdf

[3] I. Advanced Micro Devices, “Bios and kernel developer’s guide
for amd family 10h processors,” 2013. [Online]. Available: http:
//support.amd.com/TechDocs/31116.pdf

[4] J. M. May, “Mpx: Software for multiplexing hardware performance
counters in multithreaded programs,” in Proceedings of IEEE Interna-
tional Symposium on Parallel and Distributed Processing, 2001.

[5] Q. Chen, M. Guo, and Z. Huang, “Cats: Cache aware task-stealing
based on online profiling in multi-socket mukti-core architectures,” in
Proceedings of the International Conference on Supercomputing, 2012.

[6] S. Blagodurov and A. Fedorova, “User-level scheduling on numa mul-
ticore systems under linux,” in Proceedings of Linux Symposium, 2011.

[7] G. Ren, E. Tune, T. Moseley, Y. Shi, S. Rus, and R. Hundt, “Google-
wide profiling: A continuous profiling infrastructure for data centers,”
IEEE Micro, vol. 30, no. 4, pp. 65–78, 2010.

[8] Z. Jia, L. Wang, J. Zhan, L. Zhang, and C. Luo, “Characterizing
data analysis workloads in data centers,” in Proceedings of the IEEE
International Symposium on Workload Characterization (IISWC), 2013.

[9] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevd-
jic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi, “Clearing the
clouds: A study of emerging scale-out workloads on modern hardware,”
in Proceedings of the International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2012.

624

Authorized licensed use limited to: University of Southern California. Downloaded on September 27,2021 at 23:16:55 UTC from IEEE Xplore. Restrictions apply.

[10] L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, W. Gao, Z. Jia, Y. Shi,
S. Zhang, C. Zheng, G. Lu, K. Zhan, X. Li, and B. Qiu, “Bigdatabench:
a big data benchmark suite from internet services,” in Proceedings of the
International Symposium on High Performance Computer Architecture
(HPCA), 2014.

[11] A. Yasin, Y. Ben-Asher, and A. Mendelson, “Deep-dive analysis of
the data analytics workload in cloudsuite,” in Proceedings of the IEEE
International Symposium on Workload Characterization (IISWC), 2014.

[12] A. Yasin, “A top-down method for performance analysis and counters
architecture,” in Proceedings of the IEEE International Symposium on
Performance Analysis of Sytems and Software (ISPASS), 2014.

[13] W. Xiong, Z. Yu, L. Eeckhout, Z. Bei, F. Zhang, and C. Xu, “Shenzhen
transportation system (szts): A novel big data benchmark suite,” Journal
of Supercomputing, vol. 72, pp. 4337–4364, 2016.

[14] S. Kanev, J. P. Darago, K. Hazelwood, P. Ranganathan, T. Moseley,
G.-Y. Wei, and D. Brooks, “Profiling a warehouse-scale computer,” in
Proceedings of the International Symposium on Computer Architecture
(ISCA), 2015.

[15] X. Zhang, E. Tune, R. Hagmann, R. Jnagal, V. Gokhale, and J. Wilkes,
“Cpi2:cpu performance isolation for shared compute clusters,” in Pro-
ceedings of European Conference on Computer Systems (EuroSys), 2013.

[16] D. K. Tam, R. Azimi, L. B. Soares, and M. Stumm, “Rapidmrc:
Approximating l2 miss rate curves on commodity systems for online
optimizations,” in Proceedings of the International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems
(ASPLOS), 2009.

[17] L. He, Z. Yu, and H. Jin, “Fractalmrc: Online cache miss rate curve
prediction on commodity systems,” in Proceedings of the IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS), 2012.

[18] S. Blagodurov, S. Zhuravlev, M. Dashti, and A. Fedorova, “A case
for numa-aware contention management on multicore systems,” in
Proceedings of USENIX Annual Technical Conference (ATC), 2011.

[19] D. Chen, N. Vachharajani, R. Hundt, S. wei Liao, V. Ramasamy, P. Yuan,
W. Chen, and W. Zheng, “Taming hardware event samples for fdo
compilation,” in Proceedings of the International Symposium on Code
Generation and Optmization (CGO), 2010.

[20] T. Moseley, D. Grunwald, and R. Peri, “Optiscope: Performance ac-
countability for optimizing compilers,” in Proceedings of the Interna-
tional Symposium on Code Generation and Optmization (CGO), 2009.

[21] Z. Wang and M. F. O’Boyle, “Mapping parallelism to multi-cores: A
machine learning based approach,” in Proceedings of the 14th ACM SIG-
PLAN symposium on Principles and Practice of Parallel Programming
(PPoPP), 2009.

[22] C. Kozyrakis, A. Kansal, S. Sankar, and K. Vaid, “Server engineering
insights for large-scale online services,” IEEE Micro, vol. 30, no. 1, pp.
8–19, 2010.

[23] S. Browne, J. Dongarra, N. Garner, K. London, and P. Mucci, “A
portable programming interface for performance evaluation on modern
processors,” The International Journal of High Performance Computing
Applications, vol. 14, no. 0, pp. 189–204, 2000.

[24] Intel, “Intel vtune amplifier,” 2017. [Online]. Available: https:
//software.intel.com/en-us/intel-vtune-amplifier-xe/

[25] P. Team, “Perfmon2: the hardware-based performance monitoring
interface for linux,” 2017. [Online]. Available: http://perfmon2.
sourceforge.net/docs v4.html

[26] O. Team, “Oprofile,” 2017. [Online]. Available: http://oprofile.
sourceforge.net/news/

[27] L. Adhianto, S. Banerjee, M. Fagan, M. Krental, G. Marin, J. Mellor-
Crummey, and N. R. Tallent, “Hpctoolkit: Tools for performance anal-
ysis of optimized parallel programs,” Concurrency and Computation:
Practice and Experience, pp. 1–7, 2008.

[28] K. A. Huck, A. D. Malony, R. Bell, and A. Morris, “Design and
implementation of a parallel performance data management framework,”
in Proceedings of the International Conference on Parallel Processing
(ICPP), 2005.

[29] G. Zellweger, D. Lin, and T. Roscoe, “So many performance events,
so little time,” in Proceedings of the ACM Asia-Pacific Workshop on
Systems (APSys), 2016.

[30] T. Mytkowicz, P. F. Sweeney, M. Hauswirth, and A. Diwan, “Time
interpolation: So many metrics, so few registers,” in Proceedings of
IEEE International Symposium on Microarchitecture, 2007.

[31] V. M. Weaver and S. A. McKee, “Can hardware performance counters be
trusted,” in Proceedings of IEEE International Symposium on Workload
Characterization, 2008.

[32] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F. Sweeney, “Producing
wrong data without doing anything obviously wrong,” in Proceedings
of the 14th ACM Symposium on Architectural Support for Programming
Languages and Operating Systems, 2009.

[33] M. Dimakopoulou, S. Eranian, N. Koziris, and N. Bambos, “Reliable
and efficient performance monitoring in linux,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage, and Analysis (SC), 2016.

[34] R. V. Lim, D. Carrillo-Cisneros, W. Y. Alkowaileet, and I. D. Scherson,
“Computationally efficient multiplexing of events on hardware counters,”
in Proceedings of the Ottawa Linux Symposium, 2014.

[35] D. Ustiugov, Z. Tian, M. Sutherland, A. Pourhabibi, H. Kassir,
S. Gupta, M. Drumond, A. Daglis, M. Ferdman, and B. Falsafi,
“Cloudsuite 3.0: A benchmark suite for cloud services,” 2017. [Online].
Available: http://cloudsuite.ch//pages/download/

[36] Intel, “Sparkbench: The big data micro benchmark suite for spark 2.0,”
2016. [Online]. Available: https://github.com/intel-hadoop/HiBench/
blob/master/docs/run-sparkbench.md

[37] T. Moseley, N. Vachharajani, and W. Jalby, “Hardware performance
monitoring for the rest of us: A position and survey,” in Proceedings
of IFIP International Conference on Network and Parallel Computing
(NPC), 2011.

[38] W. Mathus and J. Cook, “Toward accurate performance evaluation
using hardware counters,” in Proceedings of the ITEA Modeling and
Simulation Workshop, 2003.

[39] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically
characterizing large scale program behavior,” in Proceedings of the
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2002.

[40] D. J. Berndt and J. Clifford, “Using dynamic time warping to find pattern
in time series,” in Proceedings of the AAAI-94 Workshop on Knowledge
Discovery in Databases (KDD), 1994.

[41] linux community, “perf: Linux profiling with performance counters,”
2015. [Online]. Available: https://perf.wiki.kernel.org/index.php/Main
Page#perf: Linux profiling with performance counters

[42] J. Han, M. Kamber, and J. Pei, Data Mining — Concetps and Techniques,
3rd ed. New York: Morgan Kaufmann, 2012.

[43] N. Altman, “An Introduction to Kernel and Nearest-Neighbor Nonpara-
metric Regression,” The American Statistician, vol. 46, no. 3, pp. 175–
185, February 2012.

[44] J. H. Friedman, “Stochastic Gradient Boosting,” Computational Statistics
and Data Analysis, vol. 38, no. 4, pp. 367–378, October 2002.

[45] J. H. Friedman and J. J. Meulman, “Multiple Additive Regression Trees
with Application in Epidemiology,” Statistics in Medicine, vol. 22, no. 9,
pp. 1365–1381, May 2003.

[46] C. Delimitrou and C. Kozyrakis, “Quasar: Resource-efficient and qos-
aware cluster management,” in Proceedings of International Conference
on Architecture Support for Programming Languages and Operating
Systems (ASPLOS), 2014, pp. 1–17.

[47] ——, “Paragon: Qos-aware scheduling for heterogeneous datacenters,”
in Proceedings of International Conference on Architecture Support for
Programming Languages and Operating Systems (ASPLOS), 2013, pp.
1–12.

[48] ——, “Hcloud: Resource-efficient provisioning in shared cloud sys-
tems,” in Proceedings of Twenty First International Conference on Ar-
chitecture Support for Programming Languages and Operating Systems
(ASPLOS), 2016, pp. 1–15.

[49] ——, “Bolt: I know what you did last summer... in the cloud,” in
Proceedings of Twenty Second International Conference on Architecture
Support for Programming Languages and Operating Systems (ASPLOS),
2017, pp. 1–15.

[50] S. Team, “Scipy: An open-source software for mathematics, science,
and engineering,” 2018. [Online]. Available: https://docs.scipy.org/doc/
scipy/reference/index.html

[51] A. S. Team, “Hive performance benchmarks,” 2018. [Online]. Available:
https://spark.apache.org/docs/latest/configuration.html

[52] K. A. Huck and A. D. Malony, “Perfexplorer: A performance data
mining framework for large-scale parallel computing,” in Proceedings
of the International Conference for High Performance Computing,
Networking, Storage, and Analysis (SC), 2005.

[53] D. H. Ahn and J. S. Vetter, “Scalable analysis techniques for micropro-
cessor performance counter metrics,” in Proceedings of the International
Conference on Supercomputing (ICS), 2002.

625

Authorized licensed use limited to: University of Southern California. Downloaded on September 27,2021 at 23:16:55 UTC from IEEE Xplore. Restrictions apply.

[54] J. Dongarra, K. London, S. Moore, P. Mucci, D. Terpstra, H. You, and
M. Zhou, “Experiences and lessons learned with a portable interface to
hardware performance counters,” in Proceedings of IEEE International
Parallel and Distributed Processing Symposium (IPDPS), 2003.

[55] G. Ammons, T. Ball, and J. Larus, “Exploiting hardware performance
counters with flow and context sensitive profiling,” ACM SIGPLAN
Notices, vol. 32, 01 1999.

[56] V. M. Weaver, D. Terpatra, and S. Moore, “Non-determinism and over-
count on modern hardware performance counter implementations,” in
Proceedings of IEEE International Symposium on Performance Analysis
of Systems and Software, 2013.

626

Authorized licensed use limited to: University of Southern California. Downloaded on September 27,2021 at 23:16:55 UTC from IEEE Xplore. Restrictions apply.

