
5

Distributed Graph Processing System and

Processing-in-memory Architecture with Precise

Loop-carried Dependency Guarantee

YOUWEI ZHUO, JINGJI CHEN, GENGYU RAO, and QINYI LUO, University of Southern

California, USA

YANZHI WANG, Northeastern University, USA

HAILONG YANG and DEPEI QIAN, Beihang University, China

XUEHAI QIAN, University of Southern California, USA

To hide the complexity of the underlying system, graph processing frameworks ask programmers to specify

graph computations in user-defined functions (UDFs) of graph-oriented programming model. Due to the na-

ture of distributed execution, current frameworks cannot precisely enforce the semantics of UDFs, leading to

unnecessary computation and communication. It exemplifies a gap between programming model and runtime

execution. This article proposes novel graph processing frameworks for distributed system and Processing-in-

memory (PIM) architecture that precisely enforces loop-carried dependency; i.e., when a condition is satisfied

by a neighbor, all following neighbors can be skipped. Our approach instruments the UDFs to express the

loop-carried dependency, then the distributed execution framework enforces the precise semantics by per-

forming dependency propagation dynamically. Enforcing loop-carried dependency requires the sequential

processing of the neighbors of each vertex distributed in different nodes. We propose to circulant scheduling

in the framework to allow different nodes to process disjoint sets of edges/vertices in parallel while satis-

fying the sequential requirement. The technique achieves an excellent trade-off between precise semantics

and parallelism—the benefits of eliminating unnecessary computation and communication offset the reduced

parallelism. We implement a new distributed graph processing framework SympleGraph, and two variants of

runtime systems—GraphS and GraphSR—for PIM-based graph processing architecture, which significantly

outperform the state-of-the-art.

CCS Concepts: • Computing methodologies→ Distributed programming languages;

Additional Key Words and Phrases: Graph analytics, graph algorithms, compilers, big data

Youwei Zhuo and Jingji Chen contributed equally to this work.

A preliminary version of this article (SympleGraph: Distributed Graph Processing with Precise Loop-carried Dependency

Guarantee) is published in the ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI

2020). Compared to the published version, the new contribution is the two new PIM-based runtime and architecture GraphS

and GraphSR designed based on the similar ideas that significantly outperform the state-of-the-art.

This work is supported by National Science Foundation (Grants No. CCF-1717754, No. CNS-1919289, and No. CCF-1750656).

Authors’ addresses: Y. Zhuo, J. Chen, G. Rao, Q. Luo, and X. Qian (corresponding author), University of Southern

California, Room 204, Ming Hsieh Department of Electrical and Computer Engineering (EEB), University Park, Los

Angeles, California, 90007, USA; emails: {youweizh, jingjich, gengyura, qinyiluo, xuehai.qian}@usc.edu; Y. Wang, North-

eastern University, 360 Huntington Avenue, Boston, Massachusetts, 02115, USA; email: yanz.wang@northeastern.edu;

H. Yang (corresponding author) and D. Qian, Beihang University, 37 Xueyuan Rd, Haidian Qu, Beijing Shi, China; emails:

{hailong.yang, depeiq}@buaa.edu.cn.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

0734-2071/2021/06-ART5 $15.00

https://doi.org/10.1145/3453681

ACM Transactions on Computer Systems, Vol. 37, No. 1-4, Article 5. Publication date: June 2021.

mailto:permissions@acm.org
https://doi.org/10.1145/3453681

5:2 Y. Zhuo et al.

ACM Reference format:

Youwei Zhuo, Jingji Chen, Gengyu Rao, Qinyi Luo, Yanzhi Wang, Hailong Yang, Depei Qian, and Xuehai

Qian. 2021. Distributed Graph Processing System and Processing-in-memory Architecture with Precise Loop-

carried Dependency Guarantee. ACM Trans. Comput. Syst. 37, 1-4, Article 5 (June 2021), 37 pages.

https://doi.org/10.1145/3453681

1 INTRODUCTION

Graphs capture relationships between entities. Graph analytics has emerged as an important way
to understand the relationships between heterogeneous types of data, allowing data analysts to
draw valuable insights from the patterns for a wide range of real-world applications, including
machine learning tasks [79], natural language processing [3, 26, 81], anomaly detection [60, 70],
clustering [64, 69], recommendation [21, 29, 51], social influence analysis [15, 71, 76], and bioin-
formatics [2, 19, 39].

At the age of big data, the huge graph size, e.g., billions of edges, and the nature of graph com-
putation pose significant challenges to computer system and architecture. First, the large graphs
may not fit into the memory of a single machine; even if they can, the performance will be limited
by the number of cores. Second, real-world graphs are typically sparse and stored in compressed
representation, posing challenges for conventional memory hierarchy. Specifically, graph algo-
rithms typically exhibit poor locality due to the random accesses in updating the neighbors; and
high memory bandwidth requirement due to the small amount of computation between random
accesses.

The two challenges implies that: (1) the computation capability should grow proportionally as
the memory size; and (2) the computation should be conducted near where the graph data are
stored. At system level, it motivates the approach to process graphs with distributed machines. At
architecture level, the Processing-in-memory (PIM) architecture can effectively reduces data
movement between memory and computation by placing computing logic inside memory dies.
Though once believed to be impractical, PIM recently became a practical architecture due to
the emerging 3D stacked memory technology, such as Hybrid Memory Cube (HMC) [16] and
High Bandwidth Memory (HBM) [40]. The architecture is composed of multiple memory cubes.
Within each memory cube, multiple DRAM dies are stacked with Through Silicon Via (TSV) and
provide higher internal memory bandwidth up to 360 GB/s. At the bottom of the dies, computation
logic (e.g., simple cores) can be embedded. Performing computation at in-memory compute logic
can reduce data movements in memory hierarchy. Essentially, PIM provides “memory-capacity-
proportional” bandwidth and scalability.

PIM architecture shares a common abstraction with distributed graph processing: graph process-
ing can be performed with multiple nodes connected by certain communication links, while each
node has its own local memory and computation capability. For distributed graph processing, each
node corresponds to a machine with multi-cores and the memory hierarchy. In high performance
clusters, the machines are connected by Remote Direct Memory Access (RDMA) network. The
latency and bandwidth of accessing local memory are far cheaper than accessing remote memory
in another machine. For PIM architectures such as HMC, each node is a memory cube, which con-
tains stacks of high-bandwidth memory and computation logic. The memory cubes are connected
by SerDes links, with 120 GB/s per link, and each cube can support up to four links. Although
the total external bandwidth between memory cubes is higher than internal bandwidth, recent
studies [1, 83, 86] have shown that the remote communication is still the bottleneck. In this arti-
cle, we use node when describing the idea, which can be applied to both distributed system and
architecture.

ACM Transactions on Computer Systems, Vol. 37, No. 1-4, Article 5. Publication date: June 2021.

https://doi.org/10.1145/3453681

Distributed Graph Processing System and Processing-In-Memory Architecture 5:3

Fig. 1. Bottom-up BFS algorithm.

To hide the detail and complexity of distributed system and architecture, the common approach
is to build a graph processing framework that executes programs written in the graph oriented
programming models (APIs). A number of distributed graph processing frameworks have been
proposed, e.g., Pregel [45], GraphLab [44], PowerGraph [24], D-Galois [18], and Gemini [85].
These frameworks partition the graph to distributed memory, so the neighbors of a vertex are as-
signed to different machines. Similarly, the distributed PIM-based architectures, e.g., Tesseract [1],
GraphP [83], GraphQ [86], and GraphH [17], also support graph algorithms with a runtime frame-
work that handles data in different memory cubes. To achieve the efficient implementations, the
APIs of frameworks for distributed machines and memory cubes are slightly different. The details
will be discussed in Sections 2.2 and 2.3.

In essence, the frameworks can be considered as the interface between algorithms and system/ar-
chitecture. The graph computation is abstracted as vertex-centric User-Defined Functions (UDFs)

P (v), which is executed for each vertex v . In each P (v), programmers can access the neighbors of
v as if they are local, this is why the domain-specific APIs can simplify programming. The frame-
work is responsible for transparently distributing the function to different nodes, scheduling the
computations and communication, performing synchronization, and ensure that the distribute exe-
cution output correct results. To achieve good performance, both communication and computation
need to be efficient. The communication problem, which is closely related to graph partition and
replication, has been traditionally a key consideration. Prior works have proposed 1D [44, 45],
2D [24, 85], 3D [82] partition, and investigate the design space extensively [18]. This article makes
the first attempt to improve the efficiency of the two factors at the same time by reducing redun-
dant computation and communication, by enforcing the precise dependency among UDFs.

Loop-carried dependency is a common code pattern used in UDFs: when traversing the neighbors
of a vertex in a loop, a UDF decides whether to break or continue, based on the state of processing
previous neighbors. Specifically, consider two neighbors u1 and u2 of vertex v . If u1 satisfies an
algorithm-specific condition, then u2 will not be processed due to the dependency. The pattern
appears in several important algorithms. Consider the bottom-up breadth-first search (BFS) [7]
with pseudocode in Figure 1(a). In each iteration, the algorithm visits the neighbors of “unvisited”
vertices. If any of the neighbors of the current unvisited vertex is in the “frontier,” then it will no
longer traverse other neighbors and mark the vertex as “visited.”

In distributed frameworks [14, 18, 23, 24, 32, 34, 45, 62, 78, 85], programmers can write a con-
trol flow with the break statement in UDF to indicate the control dependency. Figure 1(b) shows
signal-slot implementation of bottom-up BFS in Gemini [85]. The signal and slot UDF spec-
ify the computation to process each neighbor of a vertex and vertex update, respectively. We see

ACM Transactions on Computer Systems, Vol. 37, No. 1-4, Article 5. Publication date: June 2021.

5:4 Y. Zhuo et al.

Fig. 2. Bottom-up BFS execution.

that the bottom-up BFS UDF has control dependency. The signal function iterates the neighbors
of vertex v , and breaks out of the loop when it finds the neighbor in the frontier (Line 5). This
control dependency expresses the semantics of skipping the following edges and avoids unneces-
sary edge traversals. However, if u1 and u2 are distributed in different machines, then u1 and u2

can be processed in parallel and u2 does not know the state after processing u1. Therefore, the
loop-carried dependency specified in UDF is not precisely enforced in the execution, thereby only
an “illusion.” We will show in Section 2.3 that the frameworks for PIM-based architecture incur
the similar problem.

The consequence of such imprecise execution behavior is unnecessary computation and commu-

nication. As shown in Figure 2, vertex 9 has eight neighbors, two of them (vertex 7 and 8) are
allocated in machine 3, the same as the master copy of vertex 9. The others are allocated in ma-
chine 1 and 2. More background details on graph partition will be discussed in Section 2.2. To
perform the signal UDF in remote machines, mirrors of vertex 9 are created. Update communica-
tion is incurred when mirrors (machine 1 and 2) transfer partial results of signal to the master
of vertex 9 (machine 3). Unnecessary computation is incurred when a mirror performs computa-
tions on vertex 9’s neighbors while the condition has already been satisfied. Unnecessary update
communication is incurred when the mirror sends partial results to the master.

To address this problem, we propose the novel graph processing frameworks for distributed sys-
tem and PIM architecture that precisely enforces loop-carried dependency, i.e., when a condition
is satisfied by a neighbor, all following neighbors can be skipped. Our approach analyzes the UDFs
of unmodified codes, identifies, and instruments UDF to express the loop-carried dependency. The
distributed framework enforces the dependency semantics by performing dynamic dependency
propagation. Specifically, a new type of dependency communication propagates dependency among
mirrors and back to master. Existing frameworks only support update communication, which ag-
gregates updates from mirrors to master.

Enforcing loop-carried dependency requires that all neighbors of a vertex are processed sequen-
tially. To enable sufficient parallelism while satisfying the sequential requirement, we propose
circulant scheduling and divide the execution of each iteration into steps, during which different
nodes—either machines or memory cubes—process disjoint sets of edges and vertices. If one node
determines that the execution should break in a step, then such break information is passed to
the following nodes so that the remaining neighbors are not processed. In practice, the computa-
tion and update communication of each step can be overlapped, thus the fine-grained steps do not
introduce much extra overhead.

An important benefit of the idea is that it not only eliminates unnecessary computation but po-
tentially reduces the total amount of communication. On the one side, small dependency messages
that are organized as a bit map (one bit per vertex) circulating around all mirrors and master, do
not exist in current frameworks, and thus incur extra communication. On the other side, precisely

ACM Transactions on Computer Systems, Vol. 37, No. 1-4, Article 5. Publication date: June 2021.

Distributed Graph Processing System and Processing-In-Memory Architecture 5:5

Fig. 3. Examples of algorithms with loop-carried dependency.

enforcing loop-carried dependency can eliminate unnecessary computation and update communi-
cation. Our results show that the total amount of communication is indeed reduced in most cases.
To further reduce dependency communication, we can apply differentiates dependency commu-
nication for high-degree and low-degree vertices, and only perform dependency propagation for
high-degree vertices.

Based on the ideas, we implemented a new distributed graph processing framework Symple-
Graph, and two variants of runtime systems—GraphS and GraphSR—for PIM-based graph pro-
cessing architecture. SympleGraph is based on the signal and slot APIs. We apply double buffer-
ing in SympleGraph to enable computation and dependency communication overlapping and al-
leviate load imbalance. GraphS and GraphSR provide the GenUpdate (similar to signal) and
ApplyUpdate (similar to slot) APIs but they are executing on a PIM-based architecture with
very different computation and communication capacity and trade-off. We present the runtime
implementation that carefully handles the synchronization between memory cubes and batched
communication. Moreover, GraphSR further improves the performance for certain algorithms by
accumulating partial results.

To evaluate SympleGraph, we conduct the experiments on three clusters using five algorithms
and four real-world datasets and three synthesized scale-free graphs with R-MAT generator [13].
We compare SympleGraph with two state-of-the-art distributed graph processing systems, Gem-
ini [85] and D-Galois [18]. The results show that SympleGraph significantly advances the state-of-
the-art, outperforming Gemini and D-Galois on average by 1.42× and 3.30×, and up to 2.30× and
7.76×, respectively. The communication reduction compared to Gemini is 40.95% on average, and
up to 67.48%.

We evaluate GraphS and GraphSR with a zSim [63]-based simulator using real-world graphs
as large as Friendster [41] the same algorithms. They are not commonly used in recent works on
graph processing architecture. We compare GraphS and GraphSR to GraphQ, the state-of-the-
art PIM-based graph processing architecture. The results show that GraphS achieves on average
2.2× (maximum 4.37×) speedup, on average 32.8% (maximum 50.5%) inter-cube communication
reduction. They lead to 51.6% energy saving on average. With partial results propagation, GraphSR
achieves on average 12.5× (maximum 19.91×) speedup, on average 90.23% (maximum 97.79%) inter-
cube communication reduction. They lead to 91.4% energy saving on average.

2 BACKGROUND AND PROBLEM FORMALIZATION

2.1 Graph and Graph Algorithm

A graph G is defined as (V, E) where V is the set of vertices, and E is the set of edges (u, v) (u and
v belong to V). The neighbors of a vertex v are vertices that each has an edge connected to v. The

ACM Transactions on Computer Systems, Vol. 37, No. 1-4, Article 5. Publication date: June 2021.

5:6 Y. Zhuo et al.

degree of a vertex is the number of neighbors. In the following, we explain five important iterative
graph algorithms whose implementations based on vertex functions will incur loop-carried de-
pendency in UDF. Figure 3 shows the pseudocode of one iteration of each algorithm in sequential
implementation.

Breadth-First Search. It is an iterative graph traversal algorithm that finds the shortest path in
an unweighted graph. The conventional BFS algorithm follows the top-down approach: BFS first
visits a root vertex, then in each iteration, the newly “visited” vertices become the “frontier” and
BFS visits all the neighbors of the “frontier”.

Bottom-up BFS [7] changes the direction of traversal. In each iteration, it visits the neighbors
of “unvisited” vertices, if one of them is in the “frontier,” the traversal of other neighbors will be
skipped, and the current vertex is added to the frontier and marked as “visited.” Compared to the
top-down approach, bottom-up BFS avoids the inefficiency due to multiple visits of one new vertex
in the frontier and significantly reduces the number of edges traversed.

Maximal Independent Set. An independent set is a set of vertices in a graph, in which any two
vertices are non-adjacent. A Maximal Independent Set (MIS) is an independent set that is not
a subset of any other independent set. A heuristic MIS algorithm (Figure 3(a)) is based on graph
coloring. First, each vertex is assigned distinct values (colors) and marked as active. In each iter-
ation, we find a new MIS composed of active vertices with the smallest color value among their
active neighbors’ colors. The new MIS vertices will be removed from further execution (marked
as inactive).

K-core. A K-core of a graph G is a maximal subgraph of G in which all vertices have a degree at
least k. The standard K-core algorithm [67] (Figure 3(b))1 removes the vertices that have a degree
less than K. Since removing vertices will decrease the degree of its neighbors, the operation is
performed iteratively until no more removal is needed. When counting the number of neighbors
for each vertex, if the count reaches K, we can exit the loop and mark this vertex as “no remove.”

K-means. It is a popular clustering algorithm in data mining. Graph-based K-means [62] is one
of its variants where the distance between two vertices is defined as the length of the shortest path
between them (assuming that the length of every edge is one). The algorithm shown in Figure 3(c)
consists of four steps: (1) Randomly generate a set of cluster centers. (2) Assign every vertex to the
nearest cluster center. (3) Calculate the sum of distance from every vertex to its belonging cluster
center. (4) If the clustering is good enough or the number of iterations exceed some pre-specified
threshold, then terminate the algorithm; else, go to step (1) and repeat the algorithm.

Graph Sampling. It is an algorithm that picks a subset of vertices or edges of the original graph.
We show an example of neighbor vertex sampling in Figure 3(d), which is the core component
of graph machine learning algorithms, such as DeepWalk [58], node2vec [28], and Graph Convo-
lutional Networks [6]. To sample from the neighbor of the vertex based on weights, we need to
generate a uniform random number and find its position in the prefix-sum array of the weights,
i.e., the index in the array that the first prefix-sum element is larger than or equal to our random
number.2

1There are other K-core algorithms with linear time complexity [47]. We choose this algorithm to demonstrate the basic

code pattern. We also compare with the algorithm in evaluation.
2There are other sampling algorithms, such as the alias method. It builds alias table step to exhibit a similar pattern that

searches prefix-sum array. We choose this algorithm, since it reflects our basic code pattern.

ACM Transactions on Computer Systems, Vol. 37, No. 1-4, Article 5. Publication date: June 2021.

Distributed Graph Processing System and Processing-In-Memory Architecture 5:7

Fig. 4. Signal-slot in pull mode.

2.2 Distributed Graph Processing Frameworks

There are two design aspects of distributed graph framework: programming abstraction, and graph
partition/replication. Programming abstraction deals with how to express algorithms with a ver-
tex function. Graph partition determines how vertices and edges are distributed, replicated, and
synchronized in different machines.

Master-mirror. To describe vertex replications, current frameworks [14, 18, 24, 85] adopt the
master-mirror notion: each vertex is owned by one machine, which keeps the master copy, its repli-
cations on other machines are mirrors. The distribution of masters and mirrors is determined by
graph partition. There are three types of graph partition techniques based on the definition in Ref-
erence [18]. Incoming edge-cut: Incoming edges of one vertex are assigned only to one machine,
while its outgoing edges may be partitioned; Outgoing edge-cut: Outgoing edges of each vertex
are assigned only to one machine, while its incoming edges are partitioned. It is used in several
systems, including Pregel [45], GraphLab [44], and Gemini [85]. Vertex-cut: Both the outgoing and
incoming edges of a vertex can be assigned to different machines. It is used in PowerGraph [24]
and GraphX [25]. Recent work [82] also proposed 3D graph partition that divides the vector data
of vertices into layers. This dimension is orthogonal to the edge and vertex dimensions considered
in other partitioning methods.

We build SympleGraph based on Gemini, the state-of-the-art distributed graph processing frame-
work using outgoing edge-cut partition. However, our ideas also apply to vertex-cut and other
distributed frameworks. It is not applicable to incoming edge-cut, which will be discussed in Sec-
tion 2.4. In outgoing edge-cut, a mirror vertex is generated if its incoming edges are partitioned
among multiple machines. Figure 2 shows an example of a graph distributed in three machines.
Circles with solid lines are masters, and circles with dashed lines are mirrors. Here, vertex 9 has
8 incoming edges, i.e., sources vertex 1 to 8. Machine 1 contains the master of vertex 1 to 3, and
machine 2 contains the master of vertex 4 to 6. The master of vertex 9 resides on machine 3 but its
incoming edges are partitioned across all three machines, so mirrors of v are created on machine
1 and 2.

Signal-slot. Ligra [68] discusses the two modes of signal-slot: push and pull. Push mode traverses
and updates the outgoing neighbors of vertices, while pull mode traverses the incoming neighbors.
The five graph algorithms discussed earlier are more efficient in pull mode in most iterations, and
SympleGraph optimization focuses on pull mode. Figure 4 shows the pseudocode of pull mode.
The signal function is first executed on mirrors in parallel. The mirrors then send update mes-
sages to the master machine. On receiving an update message, the master machine applies the slot
function to aggregate the update, and then eventually updates master vertex after receiving all up-
dates. Figure 2 also illustrated how the signal-slot function is applied for vertex 9. The blue edges

ACM Transactions on Computer Systems, Vol. 37, No. 1-4, Article 5. Publication date: June 2021.

5:8 Y. Zhuo et al.

Fig. 5. GraphP and GraphQ.

(in machine 1 and 2) refer to signals, and the yellow edges (in machine 3) refer to slots. Green edges
across machines indicate communication.

2.3 PIM-based Graph Processing

PIM architecture reduces data movements by performing computations close to where the data are
stored. 3D memory technologies (e.g., HMC [16] and HBM [40]) make PIM feasible by integrating
memory dies and compute logic in the same package, achieving high memory bandwidth and low
latency. Similar to recent works [1, 83, 86], this article considers a general PIM architecture that
captures key features of specific PIM implementations. The architecture is composed of multiple
cubes connected by external links (e.g., SerDes links in HMC with 120GB/s per link). Within each
cube, multiple DRAM dies are stacked with TSV and provide higher internal memory bandwidth
up to 320 GB/s. At the bottom of the dies, computational logics (e.g., simple cores) could be em-
bedded. In Tesseract [1], a small single-issue in-order core is placed at the logic die of each vault.
It is feasible, because the area of 32 ARM Cortex-A5 processors including an FPU (0.68 mm2 for
each core [4]) corresponds to only 9.6% of the area of an 8 Gb DRAM die area (e.g., 226 mm2 [66]).
GraphS assumes the same setting. With 16 cubes, the whole system delivers 5 TB/s memory band-
width, considerably larger than conventional memory systems. Moreover, the memory bandwidth
grows proportionally with capacity in a scalable manner.

All PIM-based graph processing architectures partition the graph into subgraphs that can fit into
each cube. The connectivity of the subgraphs leads to inter-cube communication. GraphP [83]
shows that communication is affected by the graph partition strategy and proposes a method to
reduce the communication from one inter-cube message per cross-cube edge in Tesseract [1] to
one inter-cube message per replica synchronization. This is enabled by assigning disjoint edge
sets to different cubes and generate replicas3 when a vertex is connected to two edges in different
cubes. Evaluation results show that it can reduce inter-cube communication by at least 90% in all
experiments with broadcast optimization. Figure 5(a) illustrates the insights of GraphP. � and �

3The term replica is conceptually the same as mirror in Gemini. In the context of PIM-based graph processing, it is consis-

tent with the existing literature.

ACM Transactions on Computer Systems, Vol. 37, No. 1-4, Article 5. Publication date: June 2021.

Distributed Graph Processing System and Processing-In-Memory Architecture 5:9

represent source and destination master vertices, respectively. ® represents the replica of a vertex.
Each vertex can have one master and multiple replicas in other cubes depending on graph partition.
In the example, v0 has 10 neighbors, all edges connected to v0 are assigned to cube 0, only one v1

is allocated in the same cube. Since the master of the others v2 ∼ v10 are allocated in remote
cube 1 ∼ cube 3, their replicas are created in cube 1. When the masters of v2 ∼ v10 are updated,
the runtime system will generate inter-cube messages to synchronize the replicas, indicated by
the arrows between cubes. It also shows how the two APIs are executed: GenUpdate generates the
update for a vertex based on all its neighbors; ApplyUpdate updates the property of a vertex, at
the same time the runtime system updates all its replicas.

GraphQ [86] enables regular and batched communication by generating inter-cube messages
between a specific cube pair together. Since APIs and runtime system are decoupled, GraphQ
can also support GenUpdate and ApplyUpdate. Since all communication from cube i and cube
j will happen together in batch, GraphQ naturally performs partial GenUpdate in the sender
before they are transferred to the receiver cube. Thus, we have replicas of the destination (v0)
in cube 1 ∼ cube 3. As shown in Figure 5(b), when partially reduced values are received in cube
0, they can be reduced to a single value and apply to the master of v0 by ApplyUpdate. Thus,
GenUpdate function is executed in both local and remote cubes. Based on the above explana-
tion, GraphQ supports GraphP’s APIs (which can express loop-carried dependency) but enables
more efficient execution than GraphP, we use GraphQ with GenUpdate and ApplyUpdate as the
baseline. We can see that they are equivalent to signal and slot in Gemini. Thus, the proposed
ideas can be implemented similarly. However, the runtime framework of GraphS and GraphSR
have to be built based on the architecture primitives for synchronization and efficient batched
communication.

2.4 Inefficiencies with Existing Frameworks

We can formalize the signal-slot abstraction by borrowing the notions of distributed functions
in Reference [80].

Definition 2.1. We useu to denote a sequence of neighbors of vertexv , and useu1 ⊕u2 to denote
the concatenation ofu1 andu2. A functionH is associative-decomposable if there exist two functions
I and C satisfying the following conditions:

(1) H is the composition of I and C: ∀u, H (u) = C (I (u));
(2) I is commutative: ∀u1,u2, I (u1 ⊕ u2) = I (u2 ⊕ u1);
(3) C is commutative: ∀u1,u2, C (u1 ⊕ u2) = C (u2 ⊕ u1);
(4) C is associative: ∀u1,u2, u3,C (C (u1 ⊕ u1) ⊕ u3) = C (u1 ⊕ C (u2 ⊕ u2)).

Generally, common graph algorithms can be represented by associative-decomposable vertex
functions in Definition 2.1. Intuitively, I and C correspond to signal and slot functions. Note that
the abstraction specification is also a system implementation specification. If C is commutative
and associative, then a system can can perform C efficiently: the execution can be out-of-order
with partial aggregation.

However, this essentially means that existing distributed systems require the graph algorithms
to satisfy a stronger condition.

Definition 2.2. A functionH is parallelized associative-decomposable if there exist two functions
I and C satisfying the conditions of Definition 2.1, and I preserves concatenation in H :

∀u1,u2, H (u1 ⊕ u2) = C (I (u1 ⊕ u2)) = C (I (u1) ⊕ I (u2)) .

ACM Transactions on Computer Systems, Vol. 37, No. 1-4, Article 5. Publication date: June 2021.

5:10 Y. Zhuo et al.

Gemini and other existing frameworks require the graph algorithms to satisfy Definition 2.2,
which offers parallelism and ensures correctness. On the one hand, Gemini can distribute the ex-
ecution of neighbors to different machines, and perform I independently and in parallel. On the
other hand, the output of H is the same as if executing I sequentially.

Existing frameworks are designed for algorithms without loop-carried dependency. We first
define loop-carried dependency and dependent execution. After that, we can rewrite Definition 2.1
as Definition 2.4.

Definition 2.3. We use I (u2 |u1) to denote I (u2) given the state that I (u1) has finished, such
that ∀u1,u2, I (u1 ⊕ u2) = I (u1) ⊕ I (u2 |u1). A function I has no loop-carried dependency if
∀u1,u2, I (u2 |u1) = I (u2).

Definition 2.4. A function H is associative-decomposable if there exist two functions I and C
satisfying the conditions of Definition 2.1. H has the property:

∀u1,u2, H (u1 ⊕ u2) = C (I (u1 ⊕ u2)) = C (I (u1) ⊕ I (u2 |u1)).

By Definition 2.3, these algorithms always satisfy both Definition 2.4 and Definition 2.2. Other-
wise, if a graph algorithm only satisfies Definition 2.4, but not Definition 2.2, existing frameworks
will not output the correct results. Fortunately, many graph algorithms with loop-carried depen-
dency (including the five algorithms in this article) satisfy Definition 2.2, so correctness is not an
issue for existing frameworks.

However, the intermediate output of I can be different. By Definition 2.2, we will execute
I (u1) and I (u2). By Definition 2.4, if we enforce dependency, we will execute I (u1) and I (u2 |u1).
The difference comes down to I (u2) and I (u2 |u1). If we use cost (·) to denote the computation
cost of a function or the communication amount for the output of a function, then a function
I has redundancy without enforcing dependency if ∀u1,u2, cost (I (u2)) ≥ cost (I (u2 |u1))) and
∃u1,u2, cost (I (u2)) > cost (I (u2 |u1)).

We can define functions with break semantics:

∃u1,u2, I (u2 |u1) = I (∅) = ∅.

The computation cost for I (∅) is 0, and the communication cost for ∅ is 0. It is evident that these
functions suffer from the redundancy problem. We can use bottom-up BFS and Figure 2 as an
example to calculate the cost. The computation cost is the number of edges traversed and the
communication cost is the update message to the master. For now, we ignore the overhead of
enforcing dependency. The circles with colors are incoming neighbors that will trigger the break
branch. On machine 1, the signal function breaks traversing after vertex 1, so vertex 2 and vertex
3 are skipped. On machine 2, it iterates all 3 vertices if machine 2 is not aware of the dependency
in machine 1. The computation cost is 4 edges traversed (the sum of machine 1 and machine 2),
and the communication is 2 messages (1 message from each machine). However, if we enforce the
dependency, then all vertices in machine 2 should not have been processed. The computation cost
is 1 edge traversed (only on machine 1) and the communication is 1 message (only from machine 1).

In summary, a graph algorithm with loop-carried dependency can be correct in existing frame-
works, if it satisfies Definition 2.2. However, it can be inefficient with both redundant computation,
and communication when loop-carried dependency is not faithfully enforced in a distributed en-
vironment.

Applicability. The problem exists for all graph partitions except the incoming edge-cut, i.e., all
of the incoming edges of one vertex are on the same machine, and the execution of UDFs is not
distributed to remote machines. To our knowledge, none of distributed systems [14, 18, 23, 24,
32, 34, 45, 62, 78, 85] precisely enforce loop-carried dependency semantics. While the incoming

ACM Transactions on Computer Systems, Vol. 37, No. 1-4, Article 5. Publication date: June 2021.

Distributed Graph Processing System and Processing-In-Memory Architecture 5:11

Fig. 6. Overall of system and architecture workflow.

edge-cut is an exception, the partition is inefficient and rarely used due to load imbalance issues.
According to D-Galois (Gluon), they used the vertex-cut partition by default, “since it performs
well at scale” [18].

The problem exists for many algorithms with loop-carried dependency. For the other four graph
algorithms discussed in Section 2.1: MIS has control dependency. If one vertex already finds it-
self not the smallest one, then it will not be marked as a new MIS in this iteration and thus
break out of the neighbor traversal. K-core has data and control dependency. If the vertex has
more than K neighbors, then it will not be marked as removed in this iteration, and further
computation can be skipped. K-means has control dependency: when one of the neighbors is
assigned to the nearest cluster center, the vertex can be assigned with the same center. Graph

sampling has data and control dependency. The sample is dependent on the random number and
all the preceding neighbors’ weight sum. It exits once one neighbour is selected. Note that we
use these algorithms as typical examples to demonstrate the effectiveness of our idea. They all
share the basic code pattern, which can be used as the building blocks of other more complicated
algorithms.

3 OVERVIEW OF SYSTEM AND ARCHITECTURE

Our goal is to build new distributed graph processing frameworks and runtime systems that pre-
cisely enforces loop-carried dependency semantics in UDFs. We propose a workflow that consists
of two components. The first one is UDF code analysis, which (1) determines whether the UDF
contains loop-carried dependency; (2) if so, identifies the dependency state that need to be prop-
agated during the execution; and (3) instruments codes of UDF to insert dependency communica-
tion codes executed by the framework to enforce the dependency across distributed nodes. The
second component is system or architecture/runtime supports for loop-carried dependency on the
analyzed UDF codes and communication optimization. The key technique is dependency commu-

nication, which propagates dependency among mirrors and back to master. To enforce dependency
correctly, for a given vertex, execution of UDF related to its neighbors assigned to different nodes
must be performed sequentially. The key challenge is how to enforce the sequential semantics while

still enabling enough parallelism? We solve this problem by circulant scheduling and other commu-
nication optimizations. The overall workflow of the proposed system and architecture is shown in
Figure 6.

4 USER-DEFINED FUNCTION ANALYSIS

4.1 Instrumentation Primitives

We propose dependency communication primitives, which are used internally inside the frame-
work and transparent to programmers. In the following discussion, we assume that the

ACM Transactions on Computer Systems, Vol. 37, No. 1-4, Article 5. Publication date: June 2021.

5:12 Y. Zhuo et al.

Fig. 7. Instrumented bottom-up BFS UDFs.

instrumentation is performed to the programs on Gemini described signal and slot. In Section 6,
we describe the similar procedure for GraphS and GraphSR runtimes. Dependent message has
a data type DepMessage with two types of data members: a bit for control dependency, and data
values for data dependency. To enforce loop-carried dependency, the relevant UDFs need to be
executed sequentially. Two functions emit_dep<T> and receive_dep<T> send and receive the de-
pendency state of a vertex, where the type of T is DepMessage. We first describe how SympleGraph
uses these primitives in the instrumented codes. Shortly, we will describe the details of Symple-
Graph analyzer to generate the instrumented codes.

Figure 7 shows the analyzed UDFs of bottom-up BFS with dependency information and primi-
tive. When processing a vertex u, the framework first executes emit_dep to get whether the fol-
lowing computation related to this vertex should be skipped (Lines 5 ∼ 7). After the vertex u is
added to the current frontier, emit_dep is inserted to notify the next machine, which executes
the function. Note that emit_dep and emit_dep do not specify the sender and receiver of the de-
pendency message, it is intentional as such information is pre-determined by the framework to
support circulant scheduling.

4.2 Code Analysis

To implement the dependent computation of function I in Definition 2.4, we instrument I to in-
clude dependency communication and leave C unchanged. We develop SympleGraph analyzer , a
prototype tool based on Gemini’s signal-slot programming abstraction. To simplify the analyzer
design, we make the following assumptions on the UDFs.

• The UDFs store dependency data in capture variables of lambda expressions. Copy state-
ments of these variables are not allowed so that we can locate the UDFs and variables.
• The UDFs traverse neighbor vertices in a loop.

Based on the assumptions, we design SympleGraph analyzer as two passes in clang LibTooling at
clang-AST level.

(1) In the first pass, our analyzer locates the UDFs and analyzes the function body to determine
whether loop-carried dependency exists.

ACM Transactions on Computer Systems, Vol. 37, No. 1-4, Article 5. Publication date: June 2021.

Distributed Graph Processing System and Processing-In-Memory Architecture 5:13

(a) Use clang-lib to compile the source code and obtain the corresponding Clang-AST.
(b) Traverse the AST to: (1) locate the UDF; (2) locate all process-edges (sparse-signal, sparse-

slot, dense-signal, dense-slot) calls and look for the definitions of all dense-signal functions;
(3) search for all for-loops that traverse neighbors in dense-signal functions and check
whether loop-dependency patterns exist (there is at least one break statement related to
the for-loop); (4) store all AST nodes of interests;

(2) In the second pass, if the dependency exits, it identifies the dependency state for communi-
cation and performs a source-to-source transformation.

(a) Insert dependency communication initialization code.
(b) Before the loop in UDF, insert a new control flow that checks dependency in preceding

loops with receive_dep.
(c) Inside the loop in UDF, insert emit_dep before the corresponding break statement to prop-

agate the dependency message.

Based on the codes in Figure 1(b), SympleGraph analyzer will generate the source codes in Figure 7.

4.3 Discussion

In this section, we discuss the alternative approaches that can be used to enforce loop-carried
dependency.

New Graph Domain Specific Language. Besides the analysis, SympleGraph provides a new Do-

main Specific Language (DSL) and asks the programmer to express loop dependency and state.
We support a new functional interface fold_while to replace the for-loop. It specifies a state ma-
chine and takes three parameters: initial dependency data, a function that composes dependency
state and current neighbor, a condition that exits the loop. The compiler can easily determine the
dependency state and generate the corresponding optimized code.

Manual analysis and instrumentation. Some will argue that if graph algorithms UDFs are simple
enough, the programmers can manually analyze and optimize the code. SympleGraph also exposes
communication primitives to the programmers so that they can still leverage the optimizations
when the code is not amendable to static analysis.

Manual analysis may even provide more performance benefits, because some optimizations are
difficult for static analysis to reason about. One example is the communication buffer. In bottom-up
BFS, users can choose to repurpose “visited” array as the break dependency state. The “visited” is a
bit vector and can be implemented as a bitmap. When we record the dependency for a vertex, the
“visited” has already been set, so we can reduce computation by avoiding the bit set operation in
the dependency bitmap. When we send the dependency, we can actually send “visited” and avoid
the memory allocation for dependency communication.

However, writing such optimizations manually is not recommended for two reasons. First, the
optimizations in memory footprint and computation are not the bottleneck to the overall perfor-
mance. The memory reduction is one bit per vertex, while in every graph algorithm, the data field
of each vertex takes at least four bytes. As for the computation reduction, setting a bit sequentially
in a bitmap is also negligible compared with the random edge traversals. In our evaluation, the per-
formance benefit is not noticeable (within 1% in execution time). Second, manual optimizations will
affect the readability of the source code, and increase the burden of the user, hurting programma-
bility. It contradicts the original purpose of domain-specific systems. The programmers need to
have a solid understanding of both the algorithm and the system. In the same example, there is
another bitmap “frontier” in the algorithm. However, it is incorrect to repurpose “frontier” as the
dependency data.

ACM Transactions on Computer Systems, Vol. 37, No. 1-4, Article 5. Publication date: June 2021.

5:14 Y. Zhuo et al.

Fig. 8. Circulant Scheduling.

5 SYMPLEGRAPH SYSTEM

In this section, we discuss how SympleGraph schedules dependency communication to enforces
dependent execution and several system optimizations.

5.1 Enforcing Dependency: Circulant Scheduling

By expanding the signal expressions in Figure 4 for all vertices, we have Figure 8, a nested loop.
Our goals are to (1) parallelize the outer loop and (2) enforce the dependency order of the inner
loop. However, if each vertex starts from the same machine, then the other machines are idle and
parallelism is limited. To preserve parallelism and enforce dependency simultaneously, we have
to schedule each vertex to start with mirrors from different machines. We formalize the idea as
circulant scheduling, which divides the iteration intop steps forp machines and execute I according
to a circulant permutation. In fact, any cyclic permutation will work, and we choose one circulant
for simplicity.

Definition 5.1 (Circulant Scheduling). A circulant permutation σ is defined as σ (i) = (i+p−1)%p,
and initially σ (i) = i, i = 0, . . . , (p − 1). The vertices in a graph is divided into p disjoint sets

according to he master vertices. Let u (i) denote the sequence of neighbors of master vertices on

machine i . In step j (j = 0, 1, . . . ,p − 1), circulant scheduling executes I (u (i)) on machine σ j (i).

Circulant scheduling achieves the two goals and the correctness can be inferred from the prop-
erties of permutation. For any specific vertex set, its execution follows the order of I (uσ j−1 |uσ 0 ⊕
uσ 1 ⊕ ... ⊕ uσ j−2), starting from step 0. For any specific step j, the scheduling specifies different
machines, because σ j is a permutation. For example, the permutation of step 0 based on (0, 1, 2, 3)
is σ 0 = (3, 0, 1, 2). In step 0 (the first step), I (u (0)) (the sequence of neighbors of master vertices
on machine 0) is processed on machine 3 (σ 0 (0) = 3). In step 1 (the second step), σ 1 = (2, 3, 0, 1),
I (u (0)) is processed on machine 2 (σ 1 (0) = 2).

Figure 9 shows an example with four machines. Figure 9 (a) shows the matrix view of the graph.
An element (i,j) in the matrix represents an edge (vi ← vj). Similarly, we use the notion [i, j]
to represent a subgraph with edges from machine i to machine j. Based on circulant scheduling,
machine 0 first processes all edges in [0, 1] and then [0, 2], [0, 3], [0, 0]. [0, 1] contains the edges
between master vertices on machine 1 and their neighbors in machine 0. The other machines are
similar. In the same step, each machine i processes edges in different subgraph [i, j] in parallel.
For example, in step 0, the subgraphs processed by machine 0, 1, 2, 3 are [0, 1],[1, 2],[2, 3],[3, 0],
respectively. After all steps, edges in [j, i], j ∈ {0, 1, 2, 3}, are processed sequentially.

Figure 9(b) shows the step execution according to Figure 9(a) with dependency communication.
The dependency communication pattern is the same for all steps: each machine only communi-
cates with the machine on its left. Note that circulant scheduling enables more parallelism, because
each machine processes disjoint sets of edges in parallel. It is still more restrictive than arbitrary

ACM Transactions on Computer Systems, Vol. 37, No. 1-4, Article 5. Publication date: June 2021.

Distributed Graph Processing System and Processing-In-Memory Architecture 5:15

Fig. 9. A Circulant Scheduling Example. Panel (a) shows the graph partitions and their corresponding steps

in the schedule. Panels (b, c) show the communication flow.

execution. Without circulant scheduling, a machine has the freedom to process all edges with
sources allocated to this machine (a range of rows in Figure 6(a)); with circulant scheduling, dur-
ing a given step (a part of an iteration), the machine can only process edges in the corresponding
subgraph. In another word, the machine loses the freedom to process edges in other steps during
this period. The evaluation results in Section 7 will show that the eliminated redundant computa-
tion and communication can fully offset the effects of reduced parallelism.

Figure 9 also shows the key difference between dependency and update communication. The
dependency communication happens between two steps, because the next step needs to receive
it before execution to enforce loop-carried dependency. For update communication, each machine
will receive from all remote machines by the end of the current iterations, when local reduction and
update are performed. The circulant scheduling will not incur much additional synchronization
overhead by transferring dependency communication between steps, because it is much smaller
than dependency communication. Moreover, before starting a new step, if a machine does not wait
for receiving the full dependency communication from the previous step, the correctness is not
compromised. With incomplete information, the framework will just miss some opportunities to
eliminate unnecessary computation and communication. In fact, Gemini can be considered as a
special case without dependency communication.

5.2 Differentiated Dependency Propagation

This section discusses an optimization to further reduce communication. In circulant scheduling,
by default, every vertex has dependency communication. For vertices with a lower degree, they
have no mirrors on some machines, thus dependency communication is unnecessary. Figure 10
shows the execution of two vertices L and H in basic circulant scheduling. The system has five
machines. Two vertices have masters in machine 1. For simplicity, the figure removes the edges
for signal functions. The green and red edges are update and dependency messages. For vertex
H, every other machine has its mirror. Therefore, the dependency message is propagated across
all mirrors and potentially reduces computation and update communication in some mirrors. For
vertex L, only machine 2 has its mirror. However, we still propagate its dependency message from
machine 1 to machine 5.

One naive solution to avoid unnecessary communication for vertex L is to store the mirror
information in each mirror. Before sending the dependency communication of a vertex, we first
check the machine number of the next mirror. However, the solution is infeasible for three reasons:
First, the memory overhead for storing the information is prohibitive. The space complexity is
the same as the total number of mirrors O (|E |). Second, dependency communication becomes
complicated in circulant scheduling. Consider a vertex with mirrors in machines 2 and 4, even

ACM Transactions on Computer Systems, Vol. 37, No. 1-4, Article 5. Publication date: June 2021.

5:16 Y. Zhuo et al.

Fig. 10. Differentiated dependency propagation.

when there is no mirror of the vertex on machine 3, we still need to send a message from machine
2 to machine 3, because we cannot discard any message in circulant communication. Third, it does
not allow batch communication, since the communication pattern for contiguous vertices are not
the same.

To reduce dependency communication with smaller benefits, we propose to differentiate the
dependency communication for high-degree and low-degree vertices. The degree threshold is an
empirical constant. The intuition is that dependency communication is the same for the high-
degree and low-degree vertices, but the high-degree vertices can save more update communication.
Therefore, SympleGraph only propagates dependency for high-degree vertices. For low-degree
vertices, we can fall back to the original schedule: each mirror directly sends the update messages
to the machine with the master vertex.

Differentiated dependency propagation is a trade-off. Falling back for low-degree vertices may
reduce the benefits of reducing the number of edges traversed. However, since the low-degree
vertices have fewer neighbors, the redundant computation due to loop-carried dependency is also
insignificant, because it skips less neighbors. PowerLyra [14] proposed differentiated graph parti-

tion. One of the key idea is to not replicate low-degree vertices. It reduces the number of mirrors
to zero, and the neighbors of the vertices are local. Therefore, it eliminates both the update and
dependency communication for these vertices. SympleGraph is orthogonal to graph partition op-
timizations like PowerLyra. SympleGraph will not change the communication and computation
pattern of low-degree vertices, as required by PowerLyra. Instead, SympleGraph enables a new
communication for high-degree vertices.

5.3 Hiding Latency with Double Buffering

In circulant scheduling, although disjoint sets of vertices can be executed in parallel within one
step, and the computation and update communication can be overlapped, the dependency commu-
nication appears in the critical path of execution between steps. Before each step, every machine
waits for the dependency message from the predecessor machine. It is not a global synchroniza-
tion for all machines: synchronization between machine 1 and 3 is independent of that between
machine 1 and 2. However, it still impairs performance. Besides the extra latency due to the depen-
dency message, it also incurs load imbalance within the step. However, all existing load balancing
techniques focus on an entire iteration and cannot solve our problem. As a result, the overall per-
formance is affected by the slowest step.

We propose double buffering optimization that enables computation and dependency communi-
cation overlap and alleviates load imbalance. Figure 11 demonstrates the key idea with an example.
We consider two machines and the first two steps. Specifically, the figure shows the dependency

ACM Transactions on Computer Systems, Vol. 37, No. 1-4, Article 5. Publication date: June 2021.

Distributed Graph Processing System and Processing-In-Memory Architecture 5:17

Fig. 11. Double buffering.

communication from machine 1 to machine 3 in step 1 in red. We also add back the blue signal
edges to represent the computation on the mirrors. In circulant scheduling, the dependency com-
munication starts after all computation is finished for the mirrors of partition 2 in machine 1.

With double buffering, we divide the mirror vertices in each step into two groups, A and B. First,
each machine processes group A and generates its dependency information, which is sent before
the processing of vertices in group B. Therefore, the computation on group B is overlapped with
the dependency communication for group A, and can be done in the background. In the example,
machine 3 will receive the dependency message of group 2A earlier so that the processing of
vertices in group 2A in machine 3 does not need to wait until machine 1 finishes processing all
vertices in both group 2A and 2B. After the second group is processed, its dependency message is
sent, and the current step completes. Before starting the next step, machine 3 only needs to wait
for the dependency message for group A, which was initiated earlier before the end of the step.

Double buffering optimization addresses two performance issues. First, at the sender side, group
A communication is overlapped with group B, while group B communication can be overlapped
with group A computation in the next step. Second, the synchronization wait time is reduced due
to reduced load imbalance. Consider the potential scenario of load imbalance in Figure 11, machine
3 (receiver) has much less load in step 1 and proceeds to the next step before machine 1. only waits
for the dependency message of group A. Since that message is sent first, it is likely to have already
arrived. Without double buffering, machine 3 has to wait for the full completion of machine 1 in
step 1.

Importantly, the double buffering optimization can be perfectly combined with the differenti-
ated optimization. We can consider the high-degree and low-degree vertices as two groups. Since
processing low-degree vertices does not need synchronization, we can overlap it with dependency
communication. In the example, if dependency from machine 1 has not arrived, we can start low-
degree vertices in step 2 without waiting.

5.4 Implementation Details

SympleGraph is implemented using C++ based on Gemini and its signal-slot interface. The key
component is the dependency communication library.

SympleGraph builds dependency data structure from data fields in struct DepMessage. Depen-
dency primitives will access the data structures by setting and reading the bits/data of each vertex.
For efficient parallel access, we organize the data in Struct of Arrays (SOA). Each data field is
instantiated as an array of the type. The size of each array is the number of vertices. The special
bit field designed for the control dependency will become a bitmap data structure.

On each machine, SympleGraph starts a dependency communication coordinator thread respon-
sible for transferring dependency message and synchronization. Before execution, coordinator
threads set up network connection and initialize the dependency data structures. SympleGraph

ACM Transactions on Computer Systems, Vol. 37, No. 1-4, Article 5. Publication date: June 2021.

5:18 Y. Zhuo et al.

Fig. 12. The runtime implementation of GraphS and GraphSR.

also considers NUMA-aware optimizations: We set the affinity of coordinator and the communi-
cation buffer for better NUMA locality.

To leverage multi-core hardware in each machine, we start multiple worker threads. During
the execution, each worker thread generates the dependency message and notifies the coordina-
tor thread. Before the execution, each worker thread queries the coordinator to check whether
the dependency message has arrived. The granularity of worker-coordinator notification is a crit-
ical factor for communication latency. If we batch all the communication in worker threads, then
the latency of dependency will increase. If we send the message too frequently, then the worker-
coordinator synchronization overhead becomes considerable.

To implement circulant scheduling, we change the scheduling order in the framework. For dif-
ferential propagation, we need to divide the vertices into two groups by their degrees in the pre-
processing step. For the degree threshold, we search powers of two with the best performance
and use 32 for all evaluation experiments. In the implementation, we generalize double-buffering
by supporting more than two buffers to handle different overlap cases. If the processing of low-
degree vertices cannot be fully overlapped with dependency communication, then more buffers
are necessary.

SympleGraph supports RDMA network using MPI. We use MPI_Put for one-sided communi-
cation. For synchronization across steps, we use MPI_Win_lock/MPI_Win_unlock operations to
start/end a RDMA epoch on the sender side. It is the “passive target synchronization” where the
remote receiver does not participate in the communication. It incurs no CPU overhead on the
receiver side.

6 GRAPHS AND GRAPHSR RUNTIME AND ARCHITECTURE

This section discusses the detailed GraphS and GraphSR runtime system implementations. Since
both GraphQ and GraphS use circulant scheduling with update communication, we build the

ACM Transactions on Computer Systems, Vol. 37, No. 1-4, Article 5. Publication date: June 2021.

Distributed Graph Processing System and Processing-In-Memory Architecture 5:19

Fig. 13. GraphS runtime.

runtime of GraphS based on GraphQ with two modifications: (1) implementing GenUpdate and
ApplyUpdate APIs, instead of processEdge, reduce, and apply; (2) adding dependency communi-
cation operations to send and receive Bitmap. Specifically, SendBitMap sends BitMap to the next
memory cube in circulant scheduling with cube ID as the parameter. RecvBitMap receives BitMap
from the previous cube in circulant scheduling. In Section 6.1, we describe the basic GraphS run-
time in which the master cube of a vertex collects the partial results of GenUpdate from all remote
replica cubes and generates the final update. It follows the procedure in Figure 5(b). Then, we pro-
pose an optimized design GraphSR in which the partial results of GenUpdate are passed around
cubes, since partial results accumulation can lead to further computation and communication re-
duction. This optimization is not applicable to all algorithms, we will discuss the observation,
applicability, and detailed design in Section 6.2.

6.1 GraphS Runtime System

Figure 12(a) shows the implementation of GraphS runtime. Each cube has (1) sendBuf and
recvBuf for batched inter-cube update communication; (2) Bitmap to keep the dependency in-
formation dynamically. Batched communication is initialized in all cubes before an iteration starts.
An iteration is divided into N steps, where N is the number of cubes. As shown in Figure 9, each
cube will have to receive the dependency communication from the previous cube in circulant
scheduling except the first step. It is performed by RecvBitMap (Line 7). The Bitmap of each cube
is always written by a remote cube. We calculate destinations of update and dependency com-
munication (Lines 9 ∼ 12) according to the patterns in Figures 9(c) and 9(b), respectively. Each
cube locally computes the partial results of GenUpdate for vertices in the current grid determined
by [myId,upNext] (Lines 14 ∼ 16). These results will be used in calculating the final updates for
destinations of all edges in the current grid, and are stored in sendBuf. In the local Bitmap, bits
corresponding to the updated vertices are set (emit_dep in Figure 7). Next, the partial results and
a range of bits in Bitmap are sent to the calculated destinations as update and dependency commu-
nication, respectively (Lines 20 and 21). The sender cube knows Bitmap address in the destination
cube, and only non-zero bytes are transferred—if any bit in a byte is non-zero, we transfer the
byte. At the end of each step, each cube has to receive the batched update communication and per-
form ApplyUpdate based on the received partial results (recvBuf). It is similar to GraphQ, and

ACM Transactions on Computer Systems, Vol. 37, No. 1-4, Article 5. Publication date: June 2021.

5:20 Y. Zhuo et al.

Fig. 14. GraphSR insights.

the update communication of the previous step can be overlapped with the computation of the
current step. At the end of the last step, all cubes will perform a final and local ApplyUpdate. The
execution of GraphS runtime with four cubes is illustrated in Figure 13.

6.2 GraphSR Runtime System

Insight. For certain algorithms, it is beneficial to accumulate partial results to expedite the termi-
nation of correct computation and further reduce redundant work. Consider the k-core algorithm,
which finds all vertices with degrees ≥ k, when k = 4, if each cube has less than 4 vertices con-
nected to the master vertex in a remote cube, no computation and communication can be saved.
It is shown in Figure 14 (a) with 16 cubes. The black edges are edges of C0. They also indicate the
potential update communication. However, it is still different from the exact algorithm semantics,
which will stop traversing after 4 neighbors have been identified. Essentially, GraphS runtime
only improves GraphQ when 4 or more neighbors are identified in a single cube. To truly enforce
the precise semantics, partial results have to be accumulated and passed around cubes.

Consider a vertex v in the master cube, which first performs local GenUpdate (not shown), since
if the result4 for vertex v can be generated locally, there is no need to check the vertex further
in other cubes. If the result is not generated, then the master cube will send the current partial
results to the next cube in circulant scheduling, which execute GenUpdate using both its local
data and the received partial results. If the “positive” final result (degree ≥ 4) is obtained in a
cube, then it will directly send it to the master cube, which updates the master copy of the vertex.
Otherwise, the partial result will be sent to the next cube in the fixed circulant scheduling that has

vertices connected to the master vertex v. This policy avoids unnecessary communication between
cubes, which only passes around irrelevant partial results. The ideas are shown in Figure 14(b).
The red edges indicate communication messages in GraphSR. Cube 1 generates partial results 3
(no neighbor is found in cube 0), which is passed to cube 3, since cube 2 does not have vertices
connected to v in cube 0.

4The result in k-core for a vertex is a boolean indicating whether it has ≥ k neighbors.

ACM Transactions on Computer Systems, Vol. 37, No. 1-4, Article 5. Publication date: June 2021.

Distributed Graph Processing System and Processing-In-Memory Architecture 5:21

Fig. 15. Percentage of unsatisfied high-degree vertex (Kcore4 & MIS).

Benefits over GraphS. We run a static analysis to simulate the first iteration of K-core (K=4) and
MIS algorithm. Figures 15(a) and 15(b) show the percentage of high-degree vertices that are not
finished at the end of current step, with graph TT and WK as examples. This percentage is always
lower for GraphSR, which leads to less communication.

Implementation. Based on these insights, we can implement GraphSR, a runtime system that
further eliminates redundant computation and communication in GraphS. The data movements
between cubes in GraphSR are essentially a combination of update (for partial results) and de-
pendency communication. Intuitively, communication for a vertex happens when “the condition
needs to be checked in the receiver cube with the provided partial result.” To compute the first
partial result, each cube will execute locally and them follows the circulant scheduling. Thus the
step scheduling is circular left shift by one position from Figure 9(a), shown in Figure 14(c). The
corresponding execution is shown in Figure 14(d). GraphSR no longer has two types of commu-
nications, so we use the same color.

The key feature of GraphSR is that a cube can send multiple batched communications to dif-
ferent remote cubes. It is due to the policy mentioned earlier: for a vertex v, a cube only sends
the message to the next cube that has v’s neighbors, so certain cube can be skipped, e.g., C2 in
Figure 14(b). The message between two cubes (Ci and Cj) and two consecutive steps includes
the batched partial results of vertices that are obtained in Ci and need to be further checked in
Cj . Thus, the message between (Ci and Cj) and message between (Ci and Cj) between two given
steps contain partial results for disjoint set of vertices. As shown in Figure 14(d), with four cubes,
the first local cube may send to all three remote cubes (between S0 and S1). After the first re-
mote cube, each cube may still send to all three others—when the result may be found and sent
back to the master cube (between S1 and S2). However, between S2 and S3, each cube may only
send to two other cubes, this is because the partial results only propagate forward. Eventually,
after the last step in the scheduling, each cube can only send one message back to the master
cube. In general, with N cubes, the maximum number of possible messages between Si and Si+1 is:
(N-1) for i=0,1; (N-i) for i = 2, . . . , (N − 1).

For a vertex v, the next cube to send the partial result can be determined statically—it is a func-
tion of graph partition. We can obtain that information in pre-processing and store it in a table
vertexMapping in each cube, each vertex needs loд2N bits. The overhead of generating this infor-
mation is negligible, since such information can be directly obtained when assigning each edge to
a cube at the graph partitioning time.

ACM Transactions on Computer Systems, Vol. 37, No. 1-4, Article 5. Publication date: June 2021.

5:22 Y. Zhuo et al.

The detailed GraphSR runtime implementation is shown in Figure 12(b). At every step, each
cube computes curMasterID (Line 5)—the master cube of the incoming partial results. If the con-
dition is satisfied in the current cube or it is the last in the ring, then the result needs to be sent
back to cube curMasterID. Each entry in recvBuf has the default value SKIP and it will be only
changed if partial result is received, which means that the cube needs to compute the update us-
ing received partial result and local vertices. It is done by GenUpdateR (Line 11), which can be
generated by adding partial result as an input. If the result is computed (should terminate) or the
cube is the last one, then the result needs to be placed in result batch by addToResultBatch (Line
14), which is sent to cube curMasterID (Line 25). If the result is not computed (need to forward),
then the partial result is placed in normal batch by addToBatch (Line 16), which is sent to corre-
sponding cube (Line 21). The cubes in the circle receive multiple normal batch at Line 33 and each
master cube receives result batch at Line 28. After computing partial results, if a cube does not
have anything to send to another one expecting an incoming forward message, it needs to send a
small “dummy” message to avoid deadlock. This is not shown in Figure 13.

Applicability. Besides k-core algorithm, the idea of GraphSR also improves MIS, where the key
operation is to compare a vertex v’s randomly assigned “color” to all its neighbors’ color so that
all vertices can make consistent decisions on identifying independent sets. We need to check all
neighbors of v in different cubes and perform the comparison. The partial result transferred will be
whether vertex v’s random number if larger (or smaller) than all vertices that have been checked in
previous cubes. There are two reasons why GraphSR can also benefit MIS: (1) It computes at local
cube in the first step, but GraphS will compute local at last step. The result is affected by graph
structure and partitioning, certain data sets are more likely to satisfy the condition at local cube.
(2) GraphS only sends message for high-degree vertices (see Section 5.2, but GraphSR propagates
dependence for all vertexes with combined update and dependency communication.

GraphSR cannot benefit algorithms that do not have the above property. For example, in bottom-
up BFS, the condition is that any neighbor belongs to the current frontier. In the beginning and
end of the execution, there are few vertices in the frontier, so many checks turn out to be false. In
GraphS, these cases do not generate update communication to master cube, while GraphSR still
needs to circulate the partial results across cubes. Kmeans is similar, since it can be considered as
BFS with multiple roots.

The key reason why SympleGraph does not implement the method used in GraphSR is that
inter-machine communication is far less efficient than that of PIM. The partial result propagation
requires a relatively small communication batch size. If the batch size is too large, then the partial
result may not be delivered to its next node in circular scheduling on time. As a result, the node may
wait for the partial results. However, small communication batch size is not acceptable in the inter-
machine network, since the latency is too high and small batch size cannot efficiently amortize the
overhead of latency. Therefore, implementing the partial results propagation on the distributed
environment reduces the network bandwidth utilization and leads to worse performance.

7 SYMPLEGRAPH EVALUATION

We evaluate SympleGraph, Gemini [85] and D-Galois [18]. D-Galois is a recent state-of-the-art
distributed graph processing frameworks with better performance than Gemini with 128 to 256
machines.

In the following, we describe the evaluation methodology. After that, we show the results of
several important aspects: (1) comparison of overall performance among the three frameworks;
(2) reduction in communication volume and computation cost; (3) scalability; and (4) piecewise
contribution of each optimization.

ACM Transactions on Computer Systems, Vol. 37, No. 1-4, Article 5. Publication date: June 2021.

Distributed Graph Processing System and Processing-In-Memory Architecture 5:23

Table 1. Graph Datasets

Graph Abbrev. |V| |E| |V ′ |
|V |

Twitter-2010 [38] tw 42M 1.5 B 0.13

Friendster [41] fr 66M 1.8 B 0.31

R-MAT-Scale27-E32 s27 134M 4.3 B 0.12

R-MAT-Scale28-E16 s28 268M 4.3 B 0.09

R-MAT-Scale29-E8 s29 537M 4.3 B 0.04

Clueweb-12 [11, 59] cl 978M 43 B 0.12

Gsh-2015 [10] gsh 988M 34 B 0.28

|V′| is the number of high-degree vertices.

7.1 Evaluation Methodology

System configuration. We use three clusters in the evaluation: (1) Cluster-A is a private cluster
with 16 nodes. In each node, there are 2 Intel Xeon E5-2630 CPUs (8 cores/CPU) and 64 GB DRAM.
The operating system is CentOS 7.4. MPI library is OpenMPI 3.0.1. The network is Mellanox Infini-
Band FDR (56 Gb/s). The following evaluation results are conducted in Cluster-A unless otherwise
stated. (2) Cluster-B is Stampede2 Skylake (SKX) at the Texas Advanced Computing Center [55].
Each node has 2 Intel Xeon Platinum 8160 (24 cores/CPU) and 192 GB DRAM with 100 Gb/s inter-
connect. It is used to reproduce D-Galois results, which requires 128 machines and fails to fit in
Cluster-A. (3) Cluster-C consists of 10 nodes. Each node is equipped with two Intel Xeon E5-2680v4
CPUs (14 cores/CPU) and 256 GB memory. The network is InfiniBand FDR (56 Gb/s). It is used to
run the two large real-world graphs (Clueweb-12 and Gsh-2015), which requires larger memory
and fails to fit in Cluster-A.

Graph Dataset. The datasets are shown in Table 1. There are four real-world datasets and three
synthesized scale free graphs with R-MAT generator [13]. We use the same generator parameters
as in Graph500 benchmark [27].

For experiments in Cluster-A, we generate three largest possible synthesized graph that fits in
its memory. Any larger graph will cause an out-of-memory error. The scales (logarithm of the
number of vertices) are 27, 28, and 29 and the edge factor (average degree of a vertex) are 32, 16,
and 8, respectively. To run undirected algorithms using directed graphs, we consider every directed
edge as its undirected counterpart. To run directed algorithms using undirected graphs, we convert
the undirected datasets to directed graphs by adding reverse edges.

Graph Algorithms. We evaluate five algorithms discussed before. We use the reference imple-
mentations when they are available in Gemini and D-Galois. While SympleGraph only benefits
the bottom-up BFS, we use adaptive direction-switch BFS [68] that chooses from both top-down
and bottom-up algorithms in each iteration.5, 6 We follow the optimization instructions in D-Galois
by running all partition strategies provided and report the best one as the baseline.7

For BFS, we average the experiment results of 64 randomly generated non-isolated roots. For
each root, we run the algorithm five times. For K-core, 2-core is a subroutine widely used in
strongly connected component [33] algorithm. We also evaluate other values of K. For K-means,

5Adaptive switch is not available in D-Galois. For fair comparison, we implement the same switch in D-Galois.
6Graph sampling implementation is not available in D-Galois.
7We exclude Jagged Cyclic Vertex-Cut and Jagged Blocked Vertex-Cut (in all algorithms) and Over decomposed by 2/4

Cartesian Vertex-Cut (in K-core), because the reference implementations either crashed or produced incorrect results.

ACM Transactions on Computer Systems, Vol. 37, No. 1-4, Article 5. Publication date: June 2021.

5:24 Y. Zhuo et al.

Table 2. K-core Runtime (in Seconds) (Cluster-A)

Graph K Gemini SympleG. Speedup

tw

4 1.9663 1.3009 1.51
8 2.9752 2.0595 1.44
16 4.9062 3.2957 1.49
32 5.8374 3.7916 1.54
64 7.5694 5.1717 1.46

fr

4 14.7322 10.3543 1.42
8 10.1319 6.7909 1.49
16 11.5904 7.4135 1.56
32 21.8317 13.4914 1.62
64 17.9096 11.4387 1.57

we choose the number of clusters as
√
|V | and runs the algorithm for 20 iterations. For algorithms

other than BFS, we run the application 20 times and average the results.

7.2 Performance

Table 4 shows the execution time of all systems. SympleGraph outperforms both Gemini and D-
Galois with 1.46× geomean (up to 3.05×) speedup over the best of the two. For the three synthe-
sized graphs with the same number of edges but different edge factor (s27, s28, and s29), graphs
with larger edge factor have slightly higher speedup in SympleGraph. For K-core, the numbers in
parenthesis use the optimal algorithm with linear complexity in the number of nodes and no loop
dependency [47]. It is slower than SympleGraph for large synthesized graphs, but significantly
faster for Twitter-2010 and Friendster. The reason is that the algorithm is suitable for graphs with
large diameters. Although real-world social graphs have relatively small diameters, they usually
have a long link structure attached to the small-diameter core component.

K-core. Table 2 shows the execution time (using 8 Cluster-A nodes) for different values of K.
SympleGraph has consistent speedup over Gemini regardless of K.

Large Graphs. We run Gemini and SympleGraph with the two large real-world graphs (Gsh-
2015 and Clueweb-12) on Cluster-C. SympleGraph has no improvement for BFS and K-means in
Clueweb-12. The reason is that bottom-up algorithm efficiency depends on graph property. In cl,
it is slower than top-down BFS for most iterations, so they are not chosen by the adaptive switch.
In other test cases, SympleGraph is noticeably better than Gemini.

7.3 Computation and Communication Reduction

The source of performance speedup in SympleGraph is mainly due to eliminating unnecessary
computation and communication with precisely enforcing loop-carried dependency. In graph pro-
cessing, the number of edges traversed is the most significant part of computation. Table 5 shows
the number of edges traversed in Gemini and SympleGraph. The first two columns are edge tra-
versed in Gemini and SympleGraph. The last column is their ratio. We see that SympleGraph
reduces edge traversal across all graph datasets and all algorithms with a 66.91% reduction on
average.

For communication, Gemini and other existing frameworks only have update communication,
while SympleGraph reduces updates but introduces dependency communication. Table 6 shows
the breakdown of communication in SympleGraph. Communication size is counted by message
size in bytes and all the numbers are normalized to the total communication in Gemini. The first

ACM Transactions on Computer Systems, Vol. 37, No. 1-4, Article 5. Publication date: June 2021.

Distributed Graph Processing System and Processing-In-Memory Architecture 5:25

Table 3. Execution Time (in Seconds) on Large Graphs (Cluster-C)

Graph App. Gemini SympleG. Speedup

gsh

BFS 4.5843 4.6031 1.00
MIS 7.3186 4.1530 1.76

K-core 24.1753 13.4465 1.80
K-means 84.7207 75.7227 1.12
Sampling 4.6578 3.4686 1.34

cl

BFS 16.8839 17.9272 1.00
MIS 11.9406 6.8330 1.75

K-core 171.8570 97.7020 1.76
K-means 128.5634 142.6216 1.00
Sampling 4.5093 3.6143 1.25

Table 4. Execution Time (in Seconds) (Cluster-A)

Graph Gemini D-Galois SymG. Speedup

B
F

S

tw 0.608 2.053 0.264 2.30
fr 1.212 4.993 0.706 1.72

s27 1.054 2.681 0.733 1.44
s28 1.325 3.682 0.976 1.36
s29 1.760 5.356 1.372 1.28

K
-c

o
re

tw 3.021(0.184) 4.125 2.190 1.38
fr 11.258(0.580) 17.213 7.390 1.52

s27 2.754(1.885) 3.512 1.640 1.68
s28 4.432(4.779) 6.056 2.663 1.66
s29 5.413(10.330) 8.534 3.806 1.42

M
IS

tw 2.081 4.056 1.421 1.46
fr 2.363 5.045 1.754 1.35

s27 2.720 5.329 1.861 1.46
s28 3.031 7.110 2.408 1.26
s29 3.600 8.620 2.835 1.27

K
-m

e
a

n
s

tw 17.590 56.748 12.688 1.39
fr 19.212 78.526 13.143 1.46

s27 27.626 61.598 19.279 1.43
s28 34.393 86.632 26.919 1.28
s29 52.087 116.307 41.760 1.25

S
a

m
p

li
n

g tw 0.786

N/A

0.867 0.91

fr 1.180 0.977 1.21
s27 1.388 1.090 1.27
s28 2.051 1.331 1.54
s29 2.932 1.869 1.57

(SympleGraph.upt) and second (SympleGraph.dep) column show update and dependency commu-
nication, respectively. The last column is the total communication of SympleGraph.

There are two important observations. First, s27, s28, and s29 have the same total number of
edges, while s27 traverses consistently less edges than s28 and s29 in all algorithms. On average,
SympleGraph on s27 traverses 24.8% edges compared with Gemini, while on s29 traverses 32.8%.

ACM Transactions on Computer Systems, Vol. 37, No. 1-4, Article 5. Publication date: June 2021.

5:26 Y. Zhuo et al.

Table 5. Number of Traversed Edges (Normalized to

Total Number of Edges in the Graph) (Cluster-A)

Graph Gemini SympG. SympG./Gemini

B
F

S

tw 0.4383 0.2214 0.5051
fr 0.8537 0.3435 0.4024

s27 0.3089 0.0870 0.2815
s28 0.3586 0.1348 0.3760
s29 0.4716 0.1879 0.3985

K
-c

o
re

tw 2.6421 1.1986 0.4537
fr 11.3283 3.1951 0.2820

s27 1.1188 0.3498 0.3126
s28 1.8717 0.6165 0.3294
s29 2.4237 1.0513 0.4338

M
IS

tw 3.9014 1.9750 0.5062
fr 5.4431 2.0479 0.3762

s27 3.1328 0.8717 0.2782
s28 3.4390 1.0174 0.2958
s29 3.7762 1.1970 0.3170

K
-m

e
a

n
s

tw 13.3972 5.5608 0.4151
fr 2.5798 1.8989 0.7361

s27 5.6167 1.7196 0.3062
s28 8.8354 2.7847 0.3152
s29 13.6472 5.3375 0.3911

S
a

m
p

li
n

g tw 1.0313 0.2143 0.2078
fr 1.2097 0.1290 0.1066

s27 1.1096 0.0709 0.0639
s28 1.1498 0.0966 0.0840
s29 1.1912 0.1172 0.0984

When the graph structure is similar (R-MAT), the number of traversed edges is less in graphs
with a larger average degree. A large average degree means more high-degree vertices that Sym-
pleGraph optimizes in differentiated computation. Therefore, s27 has more potential edges when
considering reducing computation. Second, in terms of total communication size, SympleGraph
is less than Gemini in all algorithms except graph vertex sampling. For these algorithms, control
dependency communication is one bit per vertex, because the dependency information indicates
whether the vertex in the previous step has skipped the loop. For graph sampling, data dependency
communication is the current prefix sum. It is one floating-point number for one vertex; thus total
communication might increase.

7.4 Scalability

We first compare the scalability results of SympleGraph with Gemini and D-Galois, running MIS
on graph s27 (Figure 16). The execution time is normalized to SympleGraph with 16 machines. The
data points for Gemini and SympleGraph with 1 machine are missing, because the system is out of
memory. Both Gemini and SympleGraph achieves the best performance with 8 machines. D-Galois
scales to 16 machines, but its best performance requires 128 to 256 machines according to Reference
[18]. In summary, SympleGraph is consistently better than Gemini and D-Galois with 16 machines.

ACM Transactions on Computer Systems, Vol. 37, No. 1-4, Article 5. Publication date: June 2021.

Distributed Graph Processing System and Processing-In-Memory Architecture 5:27

Table 6. SympleGraph Communication Breakdown

(Normalized to Total Communication Volume in

Gemini) (Cluster-A)

Graph SymG.upt SymG.dep SymG

B
F

S

tw 0.7553 0.0446 0.7999
fr 0.4657 0.0429 0.5085

s27 0.4151 0.0175 0.4326
s28 0.4855 0.0193 0.5047
s29 0.5993 0.0154 0.6147

K
-c

o
re

tw 0.5377 0.0074 0.5450
fr 0.3646 0.0074 0.3719

s27 0.3705 0.0051 0.3755
s28 0.3987 0.0051 0.4038
s29 0.5028 0.0039 0.5067

M
IS

tw 0.4721 0.0313 0.5034
fr 0.3639 0.0259 0.3898

s27 0.3053 0.0199 0.3252
s28 0.3336 0.0208 0.3544
s29 0.4127 0.0160 0.4287

K
-m

e
a

n
s

tw 0.6854 0.0250 0.7103
fr 0.7044 0.0393 0.7437

s27 0.3306 0.0100 0.3406
s28 0.3797 0.0118 0.3915
s29 0.5188 0.0106 0.5294

S
a

m
p

li
n

g tw 0.1877 1.1578 1.3455
fr 0.1637 0.7238 0.8875

s27 0.1706 0.6558 0.8264
s28 0.2106 0.7050 0.9157
s29 0.2565 0.7504 1.0069

Fig. 16. Scalability (MIS/s27).

From 8 to 16 machines, SympleGraph has a smaller slowdown compared with Gemini, thanks to
the reduction in communication and computation. Thus, SympleGraph scales better than Gemini.

COST. The COST metric [50] is an important measure of scalability for distributed systems. It
is the number of cores a distributed system need to outperform the fastest single-thread imple-
mentation. We use the MIS algorithm in Galois [54] and s27 graph as the single-thread baseline.

ACM Transactions on Computer Systems, Vol. 37, No. 1-4, Article 5. Publication date: June 2021.

5:28 Y. Zhuo et al.

Table 7. Execution Time (in Seconds) of

MIS Using the Best-performing Number

of Nodes (in Parenthesis) on Cluster-B

Graph D-Galois SympleGraph

tw 1.321(128) 1.113(2)

fr 1.355(128) 0.823(4)

s27 1.258(128) 0.911(4)

s28 1.380(128) 1.159(4)

s29 1.565(128) 1.420(4)

Fig. 17. Analysis of optimizations (baseline is SympleGraph with only circulant scheduling).

The COST of Gemini and SympleGraph is 4, while the COST of D-Galois is 64. We also use the
BFS algorithm in GAPBS [8] and tw graph as another baseline. GAPBS finishes in 2.29 s, while
SympleGraph takes 2.66 and 1.83 s for 2 and 3 threads, respectively. The cost of SympleGraph is 3.

D-Galois. To evaluate the best performance of D-Galois, We reproduce the results with Cluster-
B. The results are shown in Table 7. As the SKX nodes have more powerful CPUs and network,
SympleGraph requires less number of nodes (2 or 4 nodes) for the best performance. D-Galois
achieves similar or worse performance with 128 nodes. While D-Galois scales better with a large
number of nodes, running increasingly common graph analytics applications in the supercomputer
is not convenient. In fact, for these experiments, the jobs have waited for days to be executed. Based
on the results, SympleGraph on a local cluster with 4 nodes can fulfill the work of D-Galois with 128
nodes. We believe using SympleGraph on a small-scale distributed cluster is the most convenient
and practical solution.

7.5 Analysis of SympleGraph Optimizations

In this section, we analyze the piecewise contribution of the proposed optimizations over circu-
lant scheduling, i.e., differential dependency propagation, and double buffering. We run all appli-
cations on four versions of SympleGraph with different optimizations enabled. Due to space limit,
Figure 17 only shows the geometric average results of all algorithms. For each graph dataset, we
normalize the runtime to the version with basic circulant scheduling. Note that here the baseline
is not Gemini.

Double buffering effectively reduce the execution time in all cases. It successfully hides the
latency of dependency communication and reduces synchronization overhead. Differential propa-
gation optimization alone has little performance impact, because synchronization is still the bot-
tleneck without double buffering. When combined with double buffering, differential propagation
has a noticeable effect. This shows that our trade-off consideration in update and dependency

ACM Transactions on Computer Systems, Vol. 37, No. 1-4, Article 5. Publication date: June 2021.

Distributed Graph Processing System and Processing-In-Memory Architecture 5:29

Table 8. Datasets

Graph #Vertices #Edges

ego-Twitter (TT) [48] 81K 2.4M

Enwiki2013 (WK) [77] 4.2M 101M

LiveJournal (LJ) [42] 4.8M 69M

Twitter2010 (TW) [38] 42M 1.5B

Friendster (FR) [41] 66M 1.8B

communication is effective. Overall, when all optimizations are applied, the performance is always
better than individual optimization.

8 GRAPHS AND GRAPHSR EVALUATION

8.1 Evaluation Methodology

PIM System configuration. We evaluate GraphS based on zSim [63], a scalable x86-64 multicore
simulator. We modified zSim according to HMC’s memory and interconnection model, heteroge-
neous compute units, on-chip network and other hardware features. While zSim does not natively
support HMC interconnection simulation, we insert a NOC layer between LLC and memory to
simulate different intra-cube and inter-cube memory bandwidth. The results are validated against
NDP [22]. For compute units, we use 256 single-issue in-order cores in all test cases. Each core has
32 KB L1 instruction cache and 64K L1 data cache. Cache line size is 64 B and simulation frequency
is 1,000 MHz. Each core has a 16-entry message queue and 32 KB L1 instruction cache, with no L2
or shared cache. For memory configuration, we use 16 cubes (8 GB capacity, 512 banks). The cubes
are connected with the Dragonfly topology [37]. The maximal internal data bandwidth of each
cube is 320 GB/s. For meaningful comparison, the configurations are the same as GraphQ [86]

The energy consumption of the inter-cube interconnect is estimated as two components: (a)
dynamic energy, which is proportional to the number of flit transfer events that happen among
each pair of cubes; (b) static energy, which corresponds to the energy cost when the interconnect
is plugged in power but in idle state (i.e., no transfer event happens). We use zSim to count the
number of transfer events and use ORION 3.0 [36] to model the dynamic and static power of each
router. We calculate the leakage energy of the whole interconnect from the flit transfers. We also
validated Table 1 in Reference [72] with McPAT [43].

Graph Dataset. We tested with TT,WK,LJ,TW,FR in Table 8. These data sets are smaller com-
pared to the evaluation on real cluster due to the simulation speed limitation. To run algorithm on
directed graphs, we convert the un-directed datasets to directed graphs by adding reverse edges.
For large graphs (TW, FR), due to the slow simulation speed, we show results of the first several
iterations and the speedups are not used in calculating average speedups.

8.2 Performance Improvements

Figure 18 shows the execution cycles of GraphS and GraphSR normalized to GraphQ [86]. For
BFS and Kmeans, speedup is on average 1.57× and 1.86× and at maximum 1.70× and 2.43× . For
kcore-{2,3,4}, GraphS’s speedup is on average 2.96×, 2.93×, 2.84× and 4.37×, 4.09×, 3.86× at maxi-
mum, and GraphSR’s speedup is on average 13.98×, 13.92×, 12.52× and 19.91×, 17.43×, 15.83× at
maximum. When K becomes lager, the speedup gradually becomes less. For MIS, since the second
phase is not optimized, the speedup for GraphS is on average 1.60× and at maximum 1.89× and
for GraphSR on average 9.67× and at maximum 14.31× (slightly less than that of kcore). GraphS
outperforms baseline with a speedup up to 2.30× (1.55× on average).

ACM Transactions on Computer Systems, Vol. 37, No. 1-4, Article 5. Publication date: June 2021.

5:30 Y. Zhuo et al.

Fig. 18. GraphS and GraphSR runtime. Fig. 19. GraphS and GraphSR energy.

Fig. 20. GraphS and GraphSR actual compute. Fig. 21. GraphS and GraphSR communication.

8.3 Breakdown and Load Imbalance

The Figure 22 shows the breakdown of runtime into communication, computation and synchro-
nization. For GraphSR,Send indicates the runtime percentage of sending accumulated results. For
GraphS and GraphQ, Communication time was overlapped an included in the Sync time. The
load imbalance of GraphS with dependancy message is slightly better than GraphQ in most cases.
This is because vertexes with higher degrees are more likely to satisfy dependency, removing un-
necessary computation with dependency message can help to reduce the imbalance. GraphSR cuts
down more than 80% of the total runtime, and lead to very imbalance result. This imbalance is due
to graph partition and nature of this method. Given the significant speedups of GraphSR, we do
not believe it is a critical issue.

8.4 Energy Reduction

The Figure 19 shows the interconnect energy consumption of GraphS compared with GraphQ.
The energy cost of the interconnect consists of both the static consumption and the dynamic con-
sumption, which are determined by the execution time (performance) and communication amount,
respectively. GraphS reduces energy cost by 51.6% on average and 76.9% at maximum. GraphSR
reduces energy cost by 91.41% on average and 94.99% at maximum.

ACM Transactions on Computer Systems, Vol. 37, No. 1-4, Article 5. Publication date: June 2021.

Distributed Graph Processing System and Processing-In-Memory Architecture 5:31

Fig. 22. Runtime breakdown of GraphSR, GraphQ, and GraphS.

8.5 Computation and Communication Reduction

We summed the number of edges computed and number of apply to estimate the computation cost,
as shown in The Figure 20. GraphSR can reduce the actual computation to only 4.91% on average
and 2.18% at maximum. GraphS can reduce to 62.6% on average and 14.9% at maximum.

The Figure 21 shows the reduction of the communication, GraphSR reduces a huge proportion
of communication. For example, in K-core algorithm (K = 2), for vertices with 2 or more edges at
first cube, there would be no communication, for vertices with 1 edge at first cube, there would
be only one message needed, because if it only has one edge, then only a result be sent to master,
if it has more edges at the next cube, then just partial result send to the next cube and it would
satisfy there. For GraphS, in dataset like liveJournal[42], as K grows larger, there is little save of
communication. GraphS could reduces transfer to 67.2% on average and 49.5% at maximum. And
GraphSR could reduces transfer to 9.77% on average and 2.21% at maximum.

In distributed cluster, we calculated the number of edges traversed to show computation reduc-
tion. As in Table 5, GraphS reduces edge traversed to 43.6% on average and 28.2% at maximum.
For communication, the upt msg and dep msg column in Table 6 indicate the amount of update
and dependency communication, and the total comm column means the total communication. All
normalized to total communication in Gemini. We can see that GraphS indeed incurs much less
total communication than Gemini.

9 RELATED WORK

BFS Systems. References [9, 12] are distributed BFS systems for high performance computing.
They enforce loop-carried dependency only for BFS and a specific graph partition. SympleGraph
works for general graph algorithms and data partitions.

ACM Transactions on Computer Systems, Vol. 37, No. 1-4, Article 5. Publication date: June 2021.

5:32 Y. Zhuo et al.

Edge-centric Graph Systems. X-stream [61] proposes edge-centric programming model. It is mo-
tivated by the fact that sequential access bandwidth is larger than random bandwidth for all
storage (memory and disk). X-stream partitions the graph into edge blocks and process all the
edges in the block sequentially. However, the updates to the destination vertices are random. To
avoid random access, X-stream maintains an update list and append the updates sequentially. For
each vertex, its updates are scattered in the list. It is infeasible to track the dependency and skip
computation in X-stream. Edge-centric systems have other drawbacks and recent state-of-the-
art systems are vertex-centric. Therefore, SympleGraph is based on vertex-centric programming
model.

Asynchronous Graph Systems. References [46, 73–75] propose to relax the dependency of differ-
ent vertex functions H across iterations. SympleGraph enforces dependency in I (in Definition 2.1)
within one iteration. The dependency is different and thus the optimizations are orthogonal. We
will leave it as future work to enable both in one system.

Graph compiler. IrGL [57] and Abelian [23] are similar to the first analysis part in Symple-
Graph. IrGL focuses on intermediate representation and architecture-specific (GPU) optimizations.
Abelian automates some general communication optimizations with static code instrumentation.
For example, on-demand optimization reduces communication by recording the updates and send-
ing only the updated values. SympleGraph also uses instrumentation, but the objective is to trans-
form loop-carried dependency, which is not explored in graph compilers.

Graph Domain Specific Language. Many graph DSLs leverage algorithm information by asking
the users to program in a new programming interface to express new semantics. GraphIt [84] and
GreenMarl [31] are designed for shared-memory graph processing. SocialLite [65] and GRAPE [20]
are DSLs for distributed processing. However, they did not address the dependency issue described
in this article. For example, GRAPE describes graph algorithms with “partial evaluation,” “incre-
mental evaluation” and “combine.” Its system implementation is not efficient: the reported dis-
tributed performance on 24 machines is worse than single-thread naive implementation on a lap-
top [49].

Graph Processing Architectures. Tesseract [1] is the first PIM-based accelerator and is the baseline
of this article. [56] is an accelerator that support dependence tracking in asynchronous graph pro-
cessing. GraphPIM [53] demonstrates the performance benefits for graph applications by adding
the atomic operations to PIM. Graphicionado [30] is a high performance customized graph accel-
erator, based on specialized memory subsystem, instead of PIM. GraphP [83] proposes a graph
partitioning method that reduces inter-cube communication. GraphQ [86] further reduces com-
munication at intra-cube, inter-cube, inter-node levels. [5] characterized the memory system per-
formance of graph processing workloads and proposed a physically decoupled prefetcher that
improves the performance of these workloads. [35, 52] explores online traversal scheduling strate-
gies that exploit the community structure of real-world graphs to improve locality. GraphS is a
synchronous graph processing accelerator. It eliminates both communication and computation in
PIM.

10 CONCLUSION

This article proposes novel graph processing frameworks for distributed system and Processing-
In-Memory architecture that precisely enforces loop-carried dependency, i.e., when a condition
is satisfied by a neighbor, all following neighbors can be skipped. Our approach instruments the
UDFs to express the loop-carried dependency, then the distributed execution framework enforces
the precise semantics by performing dependency propagation dynamically. Enforcing loop-carried

ACM Transactions on Computer Systems, Vol. 37, No. 1-4, Article 5. Publication date: June 2021.

Distributed Graph Processing System and Processing-In-Memory Architecture 5:33

dependency requires the sequential processing of the neighbors of each vertex distributed in
different nodes—machines or memory cubes. We propose to use circulant scheduling in the frame-
work to allow different nodes to process disjoint sets of edges/vertices in parallel while satisfying
the sequential requirement. Moreover, the precise loop-carried dependency can be selectively ap-
plied only to the large-degree vertices, reducing the additional dependency propagation commu-
nication that does not exist before. Combined, they achieve an excellent trade-off between precise
semantics and parallelism—the benefits of eliminating total unnecessary computation and com-
munication offset the reduced parallelism. We implemented a new distributed graph processing
framework SympleGraph, and two variants of runtime systems—GraphS and GraphSR—for PIM-
based graph processing architecture. In a 16-node cluster, SympleGraph outperforms Gemini and
D-Galois on average by 1.42× and 3.30×, and up to 2.30× and 7.76×, respectively. The communica-
tion reduction compared to Gemini is 40.95% on average and up to 67.48%. Compared to GraphQ,
the state-of-the-art PIM-based graph processing architecture, GraphS achieves on average 2.2×
(maximum 4.37×) speedup, on average 32.8% (maximum 50.5%) inter-cube communication reduc-
tion. They lead to 51.6% energy saving on average. With partial results propagation, GraphSR
achieves on average 12.5× (maximum 19.91×) speedup, on average 90.23% (maximum 97.79%) inter-
cube communication reduction. They lead to 91.4% energy saving on average.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their insightful comments and suggestions.

REFERENCES

[1] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi. 2015. A scalable processing-in-memory

accelerator for parallel graph processing. In Proceedings of the ACM/IEEE 42nd Annual International Symposium on

Computer Architecture (ISCA’15). IEEE, 105–117.

[2] Tero Aittokallio and Benno Schwikowski. 2006. Graph-based methods for analysing networks in cell biology. Brief.

Bioinform. 7, 3 (2006), 243–255.

[3] Andrei Alexandrescu and Katrin Kirchhoff. 2007. Data-driven graph construction for semi-supervised graph-based

learning in NLP. In Proceedings of the Human Language Technology Conference of the North American Chapter of the

Association for Computational Linguistics (HLT-NAACL’07). 204–211.

[4] ARM. 2009. ARM Cortex-A5 Processor. Retrieved from http://www.arm.com/products/processors/cortex-a/cortex-a5.

php.

[5] Abanti Basak, Shuangchen Li, Xing Hu, Sang Min Oh, Xinfeng Xie, Li Zhao, Xiaowei Jiang, and Yuan Xie. 2019. Analy-

sis and optimization of the memory hierarchy for graph processing workloads. In Proceedings of the IEEE International

Symposium on High Performance Computer Architecture (HPCA’19). IEEE, 373–386.

[6] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi, Mateusz Malinowski,

Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner et al. 2018. Relational inductive biases, deep learning,

and graph networks. Retrieved from https://arXiv:1806.01261.

[7] Scott Beamer, Krste Asanović, and David Patterson. 2012. Direction-optimizing breadth-first search. In Proceedings

of the International Conference on High Performance Computing, Networking, Storage and Analysis (SC’12). IEEE Com-

puter Society Press, Los Alamitos, CA, Article 12, 10 pages. Retrieved from http://dl.acm.org/citation.cfm?id=2388996.

2389013.

[8] Scott Beamer, Krste Asanović, and David Patterson. 2015. The GAP Benchmark Suite. Retrieved from

https://arXiv:cs.DC/1508.03619.

[9] Scott Beamer, Aydin Buluc, Krste Asanovic, and David Patterson. 2013. Distributed memory breadth-first search re-

visited: Enabling bottom-up search. In Proceeding sof the IEEE International Symposium on Parallel & Distributed Pro-

cessing, Workshops and PhD Forum. IEEE, 1618–1627.

[10] Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna. 2011. Layered label propagation: A multiresolution

coordinate-free ordering for compressing social networks. In Proceedings of the 20th International Conference on World

Wide Web. ACM, 587–596.

[11] Paolo Boldi and Sebastiano Vigna. 2004. The webgraph framework I: Compression techniques. In Proceedings of the

13th International Conference on World Wide Web. ACM, 595–602.

ACM Transactions on Computer Systems, Vol. 37, No. 1-4, Article 5. Publication date: June 2021.

http://www.arm.com/products/processors/cortex-a/cortex-a5.php
https://arXiv:1806.01261
http://dl.acm.org/citation.cfm?id=2388996.2389013.
https://arXiv:cs.DC/1508.03619

5:34 Y. Zhuo et al.

[12] Aydin Buluc, Scott Beamer, Kamesh Madduri, Krste Asanovic, and David Patterson. 2017. Distributed-memory

breadth-first search on massive graphs. Retrieved from https://arXiv:1705.04590.

[13] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. 2004. R-MAT: A recursive model for graph mining. In

Proceedings of the SIAM International Conference on Data Mining. SIAM, 442–446.

[14] Rong Chen, Jiaxin Shi, Yanzhe Chen, and Haibo Chen. 2015. PowerLyra: Differentiated graph computation and par-

titioning on skewed graphs. In Proceedings of the 10th European Conference on Computer Systems (EuroSys’15). ACM,

New York, NY, Article 1, 15 pages. https://doi.org/10.1145/2741948.2741970

[15] Thayne Coffman, Seth Greenblatt, and Sherry Marcus. 2004. Graph-based technologies for intelligence analysis. Com-

mun. ACM 47, 3 (Mar. 2004), 45–47. https://doi.org/10.1145/971617.971643

[16] Hybrid Memory Cube Consortium. 2015. Hybrid Memory Cube Specification Version 2.1. Technical Report.

[17] Guohao Dai, Tianhao Huang, Yuze Chi, Jishen Zhao, Guangyu Sun, Yongpan Liu, Yu Wang, Yuan Xie, and Huazhong

Yang. 2018. Graphh: A processing-in-memory architecture for large-scale graph processing. IEEE Trans. Comput.-

Aided Design Integr. Circ. Syst. 34, 4 (2018), 640–653.

[18] Roshan Dathathri, Gurbinder Gill, Loc Hoang, Hoang-Vu Dang, Alex Brooks, Nikoli Dryden, Marc Snir, and Keshav

Pingali. 2018. Gluon: A communication-optimizing substrate for distributed heterogeneous graph analytics. In Pro-

ceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI’18). ACM,

New York, NY, 752–768. https://doi.org/10.1145/3192366.3192404

[19] Anton J. Enright and Christos A. Ouzounis. 2001. BioLayout—An automatic graph layout algorithm for similarity

visualization. Bioinformatics 17, 9 (2001), 853–854.

[20] Wenfei Fan, Jingbo Xu, Yinghui Wu, Wenyuan Yu, Jiaxin Jiang, Zeyu Zheng, Bohan Zhang, Yang Cao, and Chao Tian.

2017. Parallelizing sequential graph computations. In Proceedings of the ACM International Conference on Management

of Data (SIGMOD’17). ACM, New York, NY, 495–510. https://doi.org/10.1145/3035918.3035942

[21] Francois Fouss, Alain Pirotte, Jean-Michel Renders, and Marco Saerens. 2007. Random-walk computation of similari-

ties between nodes of a graph with application to collaborative recommendation. IEEE Trans. Knowl. Data Eng. 19, 3

(2007), 355–369.

[22] Mingyu Gao, Grant Ayers, and Christos Kozyrakis. 2015. Practical near-data processing for in-memory analytics

frameworks. In Proceedings of the International Conference on Parallel Architecture and Compilation (PACT’15). IEEE,

113–124.

[23] Gurbinder Gill, Roshan Dathathri, Loc Hoang, Andrew Lenharth, and Keshav Pingali. 2018. Abelian: A compiler for

graph analytics on distributed, heterogeneous platforms. In Proceedings of the European Conference on Parallel Process-

ing. Springer, 249–264.

[24] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin. 2012. PowerGraph: Distributed

graph-parallel computation on natural graphs. In Proceedings of the 10th USENIX Conference on Operating Systems

Design and Implementation (OSDI’12). USENIX Association, Berkeley, CA, 17–30. Retrieved from http://dl.acm.org/

citation.cfm?id=2387880.2387883.

[25] Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave, Daniel Crankshaw, Michael J. Franklin, and Ion Stoica. 2014. GraphX:

Graph processing in a distributed dataflow framework. In Proceedings of the 11th USENIX Conference on Operating

Systems Design and Implementation (OSDI’14). USENIX Association, Berkeley, CA, 599–613. Retrieved from http://dl.

acm.org/citation.cfm?id=2685048.2685096.

[26] Amit Goyal, Hal Daumé III, and Raul Guerra. 2012. Fast large-scale approximate graph construction for nlp. In Proceed-

ings of the Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language

Learning. Association for Computational Linguistics, 1069–1080.

[27] Graph500. 2010. Graph 500 Benchmarks. Retrieved from http://www.graph500.org.

[28] Aditya Grover and Jure Leskovec. 2016. Node2Vec: Scalable feature learning for networks. In Proceedings of the 22nd

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’16). ACM, New York, NY, 855–

864. https://doi.org/10.1145/2939672.2939754

[29] Ziyu Guan, Jiajun Bu, Qiaozhu Mei, Chun Chen, and Can Wang. 2009. Personalized tag recommendation using graph-

based ranking on multi-type interrelated objects. In Proceedings of the 32nd International ACM SIGIR Conference on

Research and Development in Information Retrieval. ACM, 540–547.

[30] Tae Jun Ham, Lisa Wu, Narayanan Sundaram, Nadathur Satish, and Margaret Martonosi. 2016. Graphicionado: A

high-performance and energy-efficient accelerator for graph analytics. In Proceedings of the 49th Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO’16). IEEE, 1–13.

[31] Sungpack Hong, Hassan Chafi, Edic Sedlar, and Kunle Olukotun. 2012. Green-Marl: A DSL for easy and efficient graph

analysis. SIGPLAN Not. 47, 4 (Mar. 2012), 349–362. https://doi.org/10.1145/2248487.2151013

[32] Sungpack Hong, Siegfried Depner, Thomas Manhardt, Jan Van Der Lugt, Merijn Verstraaten, and Hassan Chafi. 2015.

PGX.D: A fast distributed graph processing engine. In Proceedings of the International Conference for High Performance

ACM Transactions on Computer Systems, Vol. 37, No. 1-4, Article 5. Publication date: June 2021.

https://arXiv:1705.04590
https://doi.org/10.1145/2741948.2741970
https://doi.org/10.1145/971617.971643
https://doi.org/10.1145/3192366.3192404
https://doi.org/10.1145/3035918.3035942
http://dl.acm.org/citation.cfm?id=2387880.2387883.
http://dl.acm.org/citation.cfm?id=2685048.2685096.
http://www.graph500.org
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1145/2248487.2151013

Distributed Graph Processing System and Processing-In-Memory Architecture 5:35

Computing, Networking, Storage and Analysis (SC’15). ACM, New York, NY, Article 58, 12 pages. https://doi.org/10.

1145/2807591.2807620

[33] Sungpack Hong, Nicole C. Rodia, and Kunle Olukotun. 2013. On fast parallel detection of strongly connected com-

ponents (SCC) in small-world graphs. In Proceedings of the International Conference on High Performance Computing,

Networking, Storage and Analysis (SC’13). ACM, New York, NY, Article 92, 11 pages. https://doi.org/10.1145/2503210.

2503246

[34] Imranul Hoque and Indranil Gupta. 2013. LFGraph: Simple and fast distributed graph analytics. In Proceedings of

the First ACM SIGOPS Conference on Timely Results in Operating Systems (TRIOS’13). ACM, New York, NY, Article 9,

17 pages. https://doi.org/10.1145/2524211.2524218

[35] M. C. Jeffrey, S. Subramanian, C. Yan, J. Emer, and D. Sanchez. 2016. Unlocking ordered parallelism with the swarm

architecture. IEEE Micro 36, 3 (2016), 105–117. https://doi.org/10.1109/MM.2016.12

[36] Andrew B. Kahng, Bin Li, Li-Shiuan Peh, and Kambiz Samadi. 2012. ORION 2.0: A power-area simulator for intercon-

nection networks. IEEE Trans. Very Large Scale Integr. Syst. 20, 1 (Jan. 2012), 191–196. https://doi.org/10.1109/TVLSI.

2010.2091686

[37] Gwangsun Kim, John Kim, Jung Ho Ahn, and Jaeha Kim. 2013. Memory-centric system interconnect design with

hybrid memory cubes. In Proceedings of the 22nd International Conference on Parallel Architectures and Compilation

Techniques. IEEE Press, 145–156.

[38] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. 2010. What is Twitter, a social network or a news

media? In Proceedings of the 19th International Conference on World Wide Web (WWW’10). ACM, New York, NY, 591–

600. https://doi.org/10.1145/1772690.1772751

[39] Nicolas Le Novere, Michael Hucka, Huaiyu Mi, Stuart Moodie, Falk Schreiber, Anatoly Sorokin, Emek Demir, Katja

Wegner, Mirit I. Aladjem, Sarala M. Wimalaratne, et al. 2009. The systems biology graphical notation. Nature Biotech-

nology 27, 8 (2009), 735–741.

[40] Dong Uk Lee, Kyung Whan Kim, Kwan Weon Kim, Hongjung Kim, Ju Young Kim, Young Jun Park, Jae Hwan Kim,

Dae Suk Kim, Heat Bit Park, Jin Wook Shin, et al. 2014. 25.2 A 1.2 V 8Gb 8-channel 128GB/s high-bandwidth memory

(HBM) stacked DRAM with effective microbump I/O test methods using 29nm process and TSV. In Proceedings of the

IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC’14). IEEE, 432–433.

[41] Jure Leskovec and Andrej Krevl. 2014. friendster. Retrieved from https://snap.stanford.edu/data/com-Friendster.html.

[42] Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W. Mahoney. 2009. Community structure in

large networks: Natural cluster sizes and the absence of large well-defined clusters. Internet Math. 6, 1 (2009),

29–123.

[43] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M. Tullsen, and Norman P. Jouppi. 2009. McPAT:

An integrated power, area, and timing modeling framework for multicore and manycore architectures. In Proceedings

of the 42nd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’09). 469–480.

[44] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo Kyrola, and Joseph M. Hellerstein. 2012. Dis-

tributed GraphLab: A framework for machine learning and data mining in the cloud. Proc. VLDB Endow. 5, 8 (Apr.

2012), 716–727. https://doi.org/10.14778/2212351.2212354

[45] Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert, Ilan Horn, Naty Leiser, and Grzegorz Cza-

jkowski. 2010. Pregel: A system for large-scale graph processing. In Proceedings of the ACM SIGMOD International Con-

ference on Management of Data (SIGMOD’10). ACM, New York, NY, 135–146. https://doi.org/10.1145/1807167.1807184

[46] Mugilan Mariappan and Keval Vora. 2019. GraphBolt: Dependency-driven synchronous processing of streaming

graphs. In Proceedings of the 14th EuroSys Conference 2019 (EuroSys’19). ACM, New York, NY, Article 25, 16 pages.

https://doi.org/10.1145/3302424.3303974

[47] David W. Matula and Leland L. Beck. 1983. Smallest-last ordering and clustering and graph coloring algorithms.

J. ACM 30, 3 (1983), 417–427.

[48] Julian McAuley and Jure Leskovec. 2012. Learning to discover social circles in ego networks. In Proceedings of

the 25th International Conference on Neural Information Processing Systems (NIPS’12). Curran Associates, 539–547.

Retrievedfromhttp://dl.acm.org/citation.cfm?id=2999134.2999195.

[49] Frank McSherry. 2017. COST in the land of databases. Retrieved from https://github.com/frankmcsherry/blog/blob/

master/posts/2017-09-23.md.

[50] Frank McSherry, Michael Isard, and Derek G Murray. 2015. Scalability! But at what {COST}? In Proceedings of the 15th

Workshop on Hot Topics in Operating Systems (HotOS’15).

[51] Batul J. Mirza, Benjamin J. Keller, and Naren Ramakrishnan. 2003. Studying recommendation algorithms by graph

analysis. J. Intell. Info. Syst. 20, 2 (2003), 131–160.

[52] Anurag Mukkara, Nathan Beckmann, Maleen Abeydeera, Xiaosong Ma, and Daniel Sanchez. 2018. Exploiting locality

in graph analytics through hardware-accelerated traversal scheduling. In Proceedings of the 51st Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO’18). IEEE, 1–14.

ACM Transactions on Computer Systems, Vol. 37, No. 1-4, Article 5. Publication date: June 2021.

https://doi.org/10.1145/2807591.2807620
https://doi.org/10.1145/2503210.2503246
https://doi.org/10.1145/2524211.2524218
https://doi.org/10.1109/MM.2016.12
https://doi.org/10.1109/TVLSI.2010.2091686
https://doi.org/10.1145/1772690.1772751
https://snap.stanford.edu/data/com-Friendster.html
https://doi.org/10.14778/2212351.2212354
https://doi.org/10.1145/1807167.1807184
https://doi.org/10.1145/3302424.3303974
Retrieved from http://dl.acm.org/citation.cfm?id=2999134.2999195.
https://github.com/frankmcsherry/blog/blob/master/posts/2017-09-23.md

5:36 Y. Zhuo et al.

[53] Lifeng Nai, Ramyad Hadidi, Jaewoong Sim, Hyojong Kim, Pranith Kumar, and Hyesoon Kim. 2017. GraphPIM: En-

abling instruction-level PIM offloading in graph computing frameworks. In Proceedings of the IEEE International Sym-

posium on High Performance Computer Architecture (HPCA’17). IEEE, 457–468.

[54] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. 2013. A lightweight infrastructure for graph analytics. In

Proceedings of the 24th ACM Symposium on Operating Systems Principles (SOSP’13). ACM, New York, NY, 456–471.

https://doi.org/10.1145/2517349.2522739

[55] The University of Texas at Austin. 2019. Texas Advanced Computing Center (TACC). Retrieved from https://www.

tacc.utexas.edu/.

[56] Muhammet Mustafa Ozdal, Serif Yesil, Taemin Kim, Andrey Ayupov, John Greth, Steven Burns, and Ozcan Ozturk.

2016. Energy efficient architecture for graph analytics accelerators. In Proceedings of the ACM/IEEE 43rd Annual Inter-

national Symposium on Computer Architecture (ISCA’16). IEEE, 166–177.

[57] Sreepathi Pai and Keshav Pingali. 2016. A compiler for throughput optimization of graph algorithms on GPUs. In

Proceedings of the ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and

Applications (OOPSLA’16). ACM, New York, NY, 1–19. https://doi.org/10.1145/2983990.2984015

[58] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: Online learning of social representations. In Pro-

ceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’14). ACM,

New York, NY, 701–710. https://doi.org/10.1145/2623330.2623732

[59] The Lemur Project. 2013. The ClueWeb12 Dataset. Retrieved from http://lemurproject.org/clueweb12/.

[60] Meikang Qiu, Lei Zhang, Zhong Ming, Zhi Chen, Xiao Qin, and Laurence T. Yang. 2013. Security-aware op-

timization for ubiquitous computing systems with SEAT graph approach. J. Comput. Syst. Sci. 79, 5 (2013),

518–529.

[61] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. 2013. X-stream: Edge-centric graph processing using stream-

ing partitions. In Proceedings of the 24th ACM Symposium on Operating Systems Principles (SOSP’13). Association for

Computing Machinery, New York, NY, 472–488. https://doi.org/10.1145/2517349.2522740

[62] Semih Salihoglu and Jennifer Widom. 2013. GPS: A graph processing system. In Proceedings of the 25th International

Conference on Scientific and Statistical Database Management (SSDBM’13). ACM, New York, NY, Article 22, 12 pages.

https://doi.org/10.1145/2484838.2484843

[63] Daniel Sanchez and Christos Kozyrakis. 2013. ZSim: Fast and accurate microarchitectural simulation of thousand-core

systems. In Proceedings of the 40th Annual International Symposium on Computer Architecture (ISCA’13). ACM, New

York, NY, 475–486. https://doi.org/10.1145/2485922.2485963

[64] Satu Elisa Schaeffer. 2007. Graph clustering. Comput. Sci. Rev. 1, 1 (2007), 27–64.

[65] Jiwon Seo, Jongsoo Park, Jaeho Shin, and Monica S. Lam. 2013. Distributed socialite: A datalog-based language for

large-scale graph analysis. Proc. VLDB Endow. 6, 14 (Sep. 2013), 1906–1917. https://doi.org/10.14778/2556549.2556572

[66] Manjunath Shevgoor, Jung-Sik Kim, Niladrish Chatterjee, Rajeev Balasubramonian, Al Davis, and Aniruddha N. Udipi.

2013. Quantifying the relationship between the power delivery network and architectural policies in a 3D-stacked

memory device. In Proceedings of the 46th Annual IEEE/ACM International Symposium on Microarchitecture. ACM,

198–209.

[67] Julian Shun. 2019. K-Core. Retrieved from http://jshun.github.io/ligra/docs/tutorial_kcore.html.

[68] Julian Shun and Guy E. Blelloch. 2013. Ligra: A lightweight graph processing framework for shared memory. In

Proceedings of the 18th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP’13). ACM,

New York, NY, 135–146. https://doi.org/10.1145/2442516.2442530

[69] Julian Shun, Farbod Roosta-Khorasani, Kimon Fountoulakis, and Michael W. Mahoney. 2016. Parallel local graph

clustering. Proc. VLDB Endow. 9, 12 (Aug. 2016), 1041–1052. https://doi.org/10.14778/2994509.2994522

[70] AM Stankovic and MS Calovic. 1989. Graph oriented algorithm for the steady-state security enhancement in distribu-

tion networks. IEEE Trans. Power Delivery 4, 1 (1989), 539–544.

[71] Lei Tang and Huan Liu. 2010. Graph mining applications to social network analysis. In Managing and Mining Graph

Data. Springer, 487–513.

[72] Po-An Tsai, Nathan Beckmann, and Daniel Sanchez. 2017. Jenga: Sotware-defined cache hierarchies. In Proceedings of

the 44th Annual International Symposium on Computer Architecture. ACM, 652–665.

[73] Keval Vora. 2019. LUMOS: Dependency-driven disk-based graph processing. In Proceedings of the USENIX Conference

on Usenix Annual Technical Conference (USENIX ATC’19). USENIX Association, USA, 429–442.

[74] Keval Vora, Rajiv Gupta, and Guoqing Xu. 2017. KickStarter: Fast and accurate computations on streaming graphs

via trimmed approximations. In Proceedings of the 22nd International Conference on Architectural Support for Program-

ming Languages and Operating Systems (ASPLOS’17). Association for Computing Machinery, New York, NY, 237–251.

https://doi.org/10.1145/3037697.3037748

[75] Keval Vora, Sai Charan Koduru, and Rajiv Gupta. 2014. ASPIRE: Exploiting asynchronous parallelism in iterative

algorithms using a relaxed consistency based DSM. In Proceedings of the ACM International Conference on Object

ACM Transactions on Computer Systems, Vol. 37, No. 1-4, Article 5. Publication date: June 2021.

https://doi.org/10.1145/2517349.2522739
https://www.tacc.utexas.edu/
https://doi.org/10.1145/2983990.2984015
https://doi.org/10.1145/2623330.2623732
http://lemurproject.org/clueweb12/.
https://doi.org/10.1145/2517349.2522740
https://doi.org/10.1145/2484838.2484843
https://doi.org/10.1145/2485922.2485963
https://doi.org/10.14778/2556549.2556572
http://jshun.github.io/ligra/docs/tutorial_kcore.html.
https://doi.org/10.1145/2442516.2442530
https://doi.org/10.14778/2994509.2994522
https://doi.org/10.1145/3037697.3037748

Distributed Graph Processing System and Processing-In-Memory Architecture 5:37

Oriented Programming Systems Languages & Applications (OOPSLA’14). ACM, New York, NY, 861–878. https://doi.org/

10.1145/2660193.2660227

[76] Tianyi Wang, Yang Chen, Zengbin Zhang, Tianyin Xu, Long Jin, Pan Hui, Beixing Deng, and Xing Li. 2011. Under-

standing graph sampling algorithms for social network analysis. In Proceedings of the 31st International Conference on

Distributed Computing Systems Workshops. IEEE, 123–128.

[77] English Wikipedia. 2013. enwiki-2013. Retrieved from http://law.di.unimi.it/webdata/enwiki-2013/.

[78] Ming Wu, Fan Yang, Jilong Xue, Wencong Xiao, Youshan Miao, Lan Wei, Haoxiang Lin, Yafei Dai, and Lidong Zhou.

2015. GraM: Scaling graph computation to the trillions. In Proceedings of the 6th ACM Symposium on Cloud Computing

(SoCC’15). ACM, New York, NY, 408–421. https://doi.org/10.1145/2806777.2806849

[79] Wencong Xiao, Jilong Xue, Youshan Miao, Zhen Li, Cheng Chen, Ming Wu, Wei Li, and Lidong Zhou. 2017. Tux2:

Distributed graph computation for machine learning. In Proceedings of the USENIX Symposium on Networked Systems

Design and Implementation (NSDI’17). USENIX Association, Berkeley, CA, 669–682.

[80] Yuan Yu, Pradeep Kumar Gunda, and Michael Isard. 2009. Distributed aggregation for data-parallel computing: In-

terfaces and implementations. In Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems Principles

(SOSP’09). Association for Computing Machinery, New York, NY, 247–260. https://doi.org/10.1145/1629575.1629600

[81] Torsten Zesch and Iryna Gurevych. 2007. Analysis of the Wikipedia category graph for NLP applications. In Proceed-

ings of the TextGraphs-2 Workshop (NAACL-HLT’07). 1–8.

[82] Mingxing Zhang, Yongwei Wu, Kang Chen, Xuehai Qian, Xue Li, and Weimin Zheng. 2016. Exploring the hidden

dimension in graph processing. In Proceedings of the 12th USENIX Conference on Operating Systems Design and Imple-

mentation (OSDI’16). USENIX Association, Berkeley, CA, 285–300. Retrieved from http://dl.acm.org/citation.cfm?id=

3026877.3026900.

[83] Mingxing Zhang, Youwei Zhuo, Chao Wang, Mingyu Gao, Yongwei Wu, Kang Chen, Christos Kozyrakis, and Xuehai

Qian. 2018. GraphP: Reducing communication for PIM-based graph processing with efficient data partition. In Pro-

ceedings of the IEEE International Symposium on High Performance Computer Architecture (HPCA’18). IEEE, 544–557.

[84] Yunming Zhang, Mengjiao Yang, Riyadh Baghdadi, Shoaib Kamil, Julian Shun, and Saman Amarasinghe. 2018. GraphIt:

A high-performance graph DSL. Proc. ACM Program. Lang. 2, OOPSLA, Article 121 (Oct. 2018), 30 pages. https://doi.

org/10.1145/3276491

[85] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma. 2016. Gemini: A computation-centric distributed

graph processing system. In Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementa-

tion (OSDI’16). USENIX Association, Berkeley, CA, 301–316. http://dl.acm.org/citation.cfm?id=3026877.3026901

[86] Youwei Zhuo, Chao Wang, Mingxing Zhang, Rui Wang, Dimin Niu, Yanzhi Wang, and Xuehai Qian. 2019. GraphQ:

Scalable PIM-based graph processing. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on Mi-

croarchitecture (MICRO’52). ACM, New York, NY, 712–725. https://doi.org/10.1145/3352460.3358256

Received July 2020; revised December 2020; accepted March 2021

ACM Transactions on Computer Systems, Vol. 37, No. 1-4, Article 5. Publication date: June 2021.

https://doi.org/10.1145/2660193.2660227
http://law.di.unimi.it/webdata/enwiki-2013/
https://doi.org/10.1145/2806777.2806849
https://doi.org/10.1145/1629575.1629600
http://dl.acm.org/citation.cfm?id=3026877.3026900.
https://doi.org/10.1145/3276491
http://dl.acm.org/citation.cfm?id=3026877.3026901
https://doi.org/10.1145/3352460.3358256

