
ASPLOS Submission #287– Confidential Draft – Do Not Distribute!!

Wonderland: A Novel Abstraction-Based Out-Of-Core Graph Processing System

Mingxing Zhang†§ Yongwei Wu† Youwei Zhuo‡ Xuehai Qian‡ Chengying Huan† Kang Chen†

†Tsinghua University* ‡University of Southern California §Sangfor Technologies Inc.

Abstract
Many important graph applications are iterative algorithms

that repeatedly process the input graph until convergence. For
such algorithms, graph abstraction is an important technique:
although much smaller than the original graph, it can boot-
strap an initial result that can significantly accelerate the final
convergence speed, leading to a better overall performance.
However, existing graph abstraction techniques typically as-
sume either fully in-memory or distributed environment, which
leads to many obstacles preventing the application to an out-
of-core graph processing system.

In this paper, we propose Wonderland, a novel out-of-core
graph processing system based on abstraction. Wonderland
has three unique features: 1) A simple method applicable
to out-of-core systems allowing users to extract effective ab-
stractions from the original graph with acceptable cost and
a specific memory limit; 2) Abstraction-enabled information
propagation, where an abstraction can be used as a bridge
over the disjoint on-disk graph partitions; 3) Abstraction-
guided priority scheduling, where an abstraction can infer
the better priority-based order in processing on-disk graph
partitions. Wonderland is a significant advance over the state-
of-the-art because it not only makes graph abstraction feasible
to out-of-core systems, but also broadens the applications of
the concept in important ways. Evaluation results of Won-
derland reveal that Wonderland achieves a drastic speedup
over the other state-of-the-art systems, — up to two orders of
magnitude for certain cases.

1. Introduction
As an alternative of distributed graph processing, disk-based
single-machine graph processing systems (a.k.a., out-of-core
systems) keep only a small portion of active graph data in
memory and spill the remainder of a large graph to disks,
which make practical large-scale graph processing available
to anyone with a modern PC [20]. More importantly, it is also
demonstrated that the performance of an out-of-core system
on a single machine can even be competitive compared with
a distributed graph processing framework using hundreds of
cores [44]. Due to the ease of use and promising performance,
several recent out-of-core systems have been developed [17,
20, 22, 29, 41, 44].

Although the slow random disk I/O is usually the main
concern of designing out-of-core systems, recent works [44]

*M. Zhang, Y. Wu, C. Huan, and K. Chen are with the Department of
Computer Science and Technology, Graduate School at Shenzhen, Tsinghua
National Laboratory for Information Science and Technology (TNLIST),
Tsinghua University, Beijing 100084, China; M. Zhang is also with Sangfor
Technologies Inc.

demonstrated a great utilization of disk’s sequential bandwidth,
making the slow random disk I/O no longer a performance
bottleneck. In contrast, the convergence speed, which is ulti-
mately determined by the speed of information propagation
in the graph, still remains as the major factor affecting per-
formance. In our experiments, GridGraph [44] usually needs
more than 10 minutes to find the shortest path between two
vertices of a 17GB power-law Twitter graph [19] using dif-
ferent memory size limits, e.g., 512MB, 4GB and 16GB. We
will show that it is possible to reduce the execution time of the
same computation to 72.9s/45.6s/9.31s, — 9.3x/14.1x/66.5x
faster with 512MB/4GB/16GB memory limits, using the same
machine. Clearly, the drastic speedup has to come from the
fundamental improvement on execution efficiency, which is
the focus of this paper.

The key technique enabling this improvement is graph
abstraction, which is a concise lossy representation of the
original graph. This technique is originally applied in vi-
sualization systems, as it can provide a high-level under-
standing of the information encoded in large graphs [34].
Interestingly, it has also been shown that graph abstrac-
tion can also benefit graph processing by bootstrapping
an initial result that can accelerate the final convergence
speed [6, 7, 13, 14, 15, 16, 18, 21, 24, 26, 27, 30, 42]. However,
applying graph abstraction to out-of-core systems is still an
open problem. The fundamental obstacle is the performance
challenge. To the best of our knowledge, most existing tech-
niques assume that the original graph can be fully contained in
memory, hence directly applying them to out-of-core systems
unavoidably incurs excessive random disk I/O. The problem is
exaggerated considering 1) the complex graph transformation
operations they use, such as merging vertices into super vertex;
and 2) the potentially multiple passes of reading the original
graph.

Another obstacle is the programmability challenge, which
is not limited to out-of-core systems. Specifically, due to
the possibility of adding vertices/edges not existing in the
original graph to the abstraction, programmers are required to
design application-specific algorithms to transform the result
on abstraction to an initial result on the original graph, which
are demonstrated to be error-prone [18].

This paper attempts to apply graph abstraction to out-of-
core systems. We propose a general abstraction generating
procedure which 1) produces application-independent abstrac-
tions; 2) only reads one pass of the original graph data; and 3)
enables users to set an upper bound of memory usage. There-
fore, we fundamentally advance the state-of-the-art by solving
both performance and programmability challenge.

Even more, with an out-of-core system equipped with graph

1

abstraction, we seek new opportunities to fully unleash the
potential of graph abstraction. The insight is that, as a concise
lossy representation, graph abstraction can encode information
that captures certain property of the original graph. We pro-
pose two novel abstraction-based techniques that are naturally
applicable to out-of-core systems.

The first technique is abstraction-enabled information prop-
agation. Existing out-of-core graph processing systems typ-
ically partition the data into disjoint on-disk graph parti-
tions [20, 44]. The disjointness increases the number of it-
erations because each edge is processed at most once per
iteration. As a form of information encoder, we propose to
use graph abstraction as a “bridge” among the disjoint graph
partitions so that the information can be propagated across
them more thoroughly in the same iteration, leading to faster
convergence speed.

The second technique is abstraction-guided priority
scheduling. A common pattern of existing out-of-core graph
processing system is that they iterate the graph in a specific
pre-defined order. Although such order may not be optimal,
it is difficult to decide an alternative order that is likely better.
With the information encoded in the graph abstraction, the
system could preferentially loading the graph partition that
may produce better immediate results, again leading to less
number of iterations. The integration of this technique to the
existing systems is straightforward, but it is graph abstraction
that opens such a new opportunity.

In essence, the abstraction-based optimization techniques
generalize the current out-of-core systems, which could be
considered as having “empty” abstraction. Therefore, they
cannot benefit from the additional information encoded in
graph abstraction that enables faster convergence. For this rea-
son, we believe that abstraction is not only practical, but also
should be a standard component for any out-of-core systems.

Based on the novel techniques, we build Wonderland, a
novel abstraction-based out-of-core graph processing system.
We divide the applications supported in Wonderland into two
categories: 1) any-path queries that can be answered by any
path between two vertices; and 2) all-path queries that can
only be answered by checking all the paths between two ver-
tices, given certain effective pruning rules. We evaluate the
two kinds of queries separately and the results show that Won-
derland achieves significant speedups over the state-of-the-art
systems, — up to two orders of magnitude for certain cases.
The aforementioned impressive shortest path (an example of
all-path query) results on Twitter graph is achieved by Won-
derland, in which graph abstraction fundamentally improves
execution efficiency. Moreover, we provide the detailed piece-
wise breakdown of speedups from each proposed technique,
indicating that the overall acceleration is due to the combina-
tion of all three optimizations.

2. Background
2.1. Out-of-core Graph Processing
GraphChi [20] is the first large-scale out-of-core graph pro-
cessing system that supports vertex programs. In GraphChi,
the whole set of vertices are partitioned into “intervals” pro-
cessed one by one in an iteration. For each interval, GraphChi
ensures that all edges in an interval are stored in only a few
contiguous regions on the disk. As a result, GraphChi requires
a small number of non-sequential disk accesses during pro-
cessing and achieves good performance that is competitive to
a distributed graph system [20].

Different from GraphChi, X-Stream [29] provides an edge-
centric programming model, in which the smallest computa-
tion granularity is an edge and its two vertices. X-Stream uses
a shuffle procedure that executes an external sort to connect
its two computation phases: 1) a scatter phase that reads all
edges and outputs all updates in a stream fashion; and 2) a
gather phases that applies the updates.

(1, 2)
(2, 1)

(1, 3)
(2, 4)

(3, 2)
(4, 2)

(4, 3)

V1 V2 V3 V4

V1

V2

V3

V4

Edges partitioned into grids

1

2

3

4

P=2

Figure 1: A graph partitioned into 2×2 grids.

Based on X-Stream, GridGraph [44] proposes a 2D-
partitioning method to improve data locality by splitting edge
blocks. As illustrated in Figure 1, GridGraph also partitions
the vertices into P intervals, where each interval contains ver-
tices within a contiguous range. However, in GridGraph, the
edges are partitioned in P×P grids rather than only P shards
as in GraphChi. Each grid[i, j] contains edges that start from
vertices in interval i and end in vertices of interval j. With this
data model, the computation model of GridGraph is similar
to X-Stream. Users can define an edge function that reads
the property of an edge and its source vertex and updates its
destination vertex. The only difference is that, in GridGraph,
an edge’s update can be applied directly, instead of outputted
in a stream fashion. As a result, in processing grid[i,j], 1) the
property of the edges in this grid and the property of vertices
in interval i are read; and 2) the property of vertices in interval
j are written. The good disk locality is achieved because all
accessed data are stored contiguously so that they could be
sequentially loaded into memory. As a result, GridGraph is
shown to be much faster than X-Stream and GraphChi.

However, despite the performance differences, existing out-
of-core systems share two common patterns.
Disjoint Partitions Existing systems partition the graph data
into disjoint parts so that each part can be loaded sequentially
into memory. Vora et al. [37] try to enhance GraphChi by
dynamically adjusting the intervals so that only needed edges
are loaded into memory. However, the disjoint property still

2

applies. We find that this property ensures disk locality at the
expense of limiting convergence speed.
Fixed Processing Order Existing systems assume a fixed
order in loading and processing the disjoint data partitions.
Although such order may not be optimal, it is difficult to decide
an alternative order that is much more likely better.
2.2. Graph Abstraction
Graph abstraction is a concise lossy representation of a graph,
which can typically be stored in memory and accelerate graph
processing. Typically, the graph computation is first applied on
the small abstraction graph. Then, the result can be transferred
into an initial result on the original graph which leads to faster
convergence to the final precise result.

Specifically, six different transforming rules are defined
in [18] to reduce the size of original graph by removing or
merging vertices and edges. Figure 2 presents three exam-
ples: 1) removing a vertex if it has no incoming/outgoing
edges; 2) transforming a vertex y that has a single incom-
ing edge (x,y) and a single outgoing edge (y,z) to an edge
(x,z); 3) for a vertex v with high number of incoming edges,
merging the source vertices of those incoming edges with v.

(a) Removing vertex
without in-coming
or out-going edges.

(b) Remove vertex that has only one
in-coming and out-going edge.

(c) Reduce degree of high-degree vertex

Figure 2: Graph Abstraction in [18].

Besides the trans-
forming rules, the
properties that can
be preserved after
applying these trans-
formations are also
analyzed. These
properties can be
used to guide the de-
sign of application-specific result transformation procedure
method that transfers the result on the graph abstraction to an
initial result on the original graph. According to [18], a good
initial result can lead to 1.25×-2.14× speedup for various
algorithms (e.g., SSSP, PageRank, Connectivity).

2.3. Open Problem: Applying Graph Abstraction to Out-
Of-Core Systems.

Despite the promise of graph abstraction demonstrated by
existing works, applying it to out-of-core systems is still an
open problem. The first challenge is performance. To the
best of our knowledge, most existing techniques assume that
the original graph can be fully contained in memory, hence
directly applying them to out-of-core systems unavoidably
incurs excessive random disk I/O. The problem is exaggerated
considering 1) the complex graph transformation operations
they use, such as merging vertices into super vertex; and 2)
the potentially multiple passes of reading the original graph.

Another challenge is programmability, which actually ap-
plies to all existing techniques. Specifically, due to the pos-
sibility of adding vertices/edges not existing in the original
graph to the abstraction (e.g., rule 2 and 3 in Figure 2), pro-
grammers are required to design a transformation method that
transfers the result on the abstraction graph to an initial result
on the original graph. The algorithm in such transformation

is typically application-specific, which may even require a
redesign of the original graph algorithm. According to [18],
even different algorithm implementations of the same graph
application may enforce different requirements on the abstrac-
tion generation method, and a mismatch will lead to incorrect
answers. In the SSSP example in [18], a subtle initialization
method (affecting only one line of code) has a decisive impact
on the correctness of the final results.

The primary goal of this paper is to enable abstraction in the
out-of-core systems without error-prone transformation. Our
key observation is that it is possible to use abstractions that
consist of only edges and vertices existing in original graph.
This can be implemented by simply selecting a subset of the
original graph’s edge set as its abstraction, making it possible
to only read a single pass of original graph during the genera-
tion process. This method produces application-independent
abstractions, avoiding error-prone transformations; and allows
users to set an upper bound of memory usage, which naturally
fits the out-of-core setting.

Moreover, we seek additional opportunities to fully unleash
the potential of graph abstraction. The key insight is that, as
a concise lossy representation, graph abstraction can encode
information that captures certain property of the original graph.
It can facilitate information propagation and more efficient
scheduling.

3. Wonderland
This section describes the design of Wonderland, a novel out-
of-core graph processing system based on abstraction.
3.1. System Overview
The data model of Wonderland is the same as X-Stream and
GridGraph, i.e., a directed data graph that has mutable vertex
property and read-only edges. For undirected graphs, the edge
between two vertices is represented by two reverse edges. As
reported by many previous works [28,29,44], the immutability
of edges does not affect the expressiveness of a framework.

The workflow of Wonderland is shown in Figure 3, which is
largely different from existing works. The central piece in this
workflow is an abstraction of the original large graph. It has
two phases: 1) abstraction generation, which only needs to be
done once before the second phase, and 2) query processing.
In Wonderland, the abstraction is simply a subset of original
graph’s edge set that contains at most X edges.

In query processing, the generated abstraction is reused
for queries of the same or even different graph applications.
Specifically, the system maintains an in-memory sub-graph
of the original graph (i.e., in_memory_graph), which initially
contains only the abstraction (line 10). In each iteration, the
user-defined processing function is used to update vertices
contained in this sub-graph (line 12). This procedure is re-
peated until a certain convergence condition is reached. In
the first iteration, the execution of line 12 is to process the
query only on the abstraction, which can be considered as
the step to bootstrap an initial result. The abstraction-enabled

3

1 // Abstraction Generation
2 abstraction = on-disk = {}
3 while not graph.empty()
4 abstraction = {abstract, graph.PopN(...)}
5 abstract, deleted = Select(abstract, X)
6 on-disk = {on-disk, deleted}
7
8 // Query Processing
9 foreach query

10 in_memory_graph = {abstract}
11 while not converge
12 Process(query, in_memory_graph)
13 load = Choose(on-disk)
14 in_memory_graph = {abstract, load}

Figure 3: An Overview of Wonderland’s Workflow.

information propagation and the abstraction-guided priority
scheduling can be expressed naturally in this workflow.
Abstraction Generation The first phase of Wonderland is to
generate an abstraction, initiated as an empty set (line 2), and
is iteratively updated (line 3-6). For each iteration, the system
expands the current abstraction with several edges from the
original graph (line 4), and then selects at most X edges from
the expanded abstraction to remain in abstract (line 5). The
edges not selected (stored in deleted) are dumped to disk in
a stream fashion (line 6).

This generation procedure is especially suitable for out-
of-core systems because: 1) in each iteration, only a part
of graph (i.e., the expanded abstract) is loaded into memory,
based on which, a limited view of the graph, edges are selected;
2) the original graph is read only once; and 3) the generated
abstraction only consists of edges in the original graph.
Abstraction-Guided Information Propagation The out-of-
core graph processing systems partition the graph into disjoint
parts (i.e., edge sets). For clarity, the term round refers to
the processing of all parts, while the term iteration refers to
processing of one part. The current systems only allow infor-
mation propagation between different parts at the boundary of
consecutive rounds, but not iterations. It limits the information
propagation, and thereby, convergence speed. In Wonderland,
the abstraction can work as a bridge among these disjoint
parts, which speedup convergence.

To achieve this goal, at the end of every iteration, a part of
the on-disk graph is chosen (defined by Choose function) to
be loaded into memory (line 13). Then, a new in-memory sub-
graph is generated using both the abstraction and the chosen
edges (line 14). Compared to processing only disjoint parts,
Wonderland allows a common abstraction to be shared among
different iterations and hence enables information propagation
between different parts in a round through the abstraction.
Abstraction-Guided Priority Scheduling With Wonder-
land’s workflow, the order or priority to process the edge
blocks can be specified in Choose function in line 13. This
could be used to support the abstraction-guided priority
scheduling. The users implement the algorithm in this func-
tion to determine the proper scheduling decision based on the
information encoded in the abstraction. In Section 4.2, we will
explain a simple example showing how to define the priority
using on a specific graph application (i.e., shortest path).

Although the workflow of Wonderland is largely different
from existing works, we intend to ensure the same level of
programmability as existing graph processing systems, while,
at the same time, provides excellent speedup. To this end,
we need to consider several problems: 1) how to implement
the Select function that provides flexible options to generate
abstraction for different applications; 2) how to reduce random
disk accesses; 3) how to implement the Choose function to
decide which part of the remained graph should be loaded
into memory; and 4) how to implement the Process function
in a user-friendly manner (e.g., providing the familiar vertex
program interface). In the following, we discuss how these
problems are solved in Wonderland, which leads to the refined
workflow demonstrated in Figure 4. A detailed case study
based on Wonderland is presented in Section 4.
3.2. Abstraction Generation
In Wonderland, the abstraction is generated incrementally
through multiple steps, each of which reads a number of edges
that may be included in the abstraction. With limited amount
of memory, users specify two parameters: X indicates the
maximum size of the abstraction, and B indicates the number
of edges read in each iteration. They should be chosen such
that X plus B edges could be held in the machine’s memory.

In principle, a smaller B leads to better abstraction but
longer preprocessing time. Based on our experiments, a proper
choice is to have roughly B/X = 1/4. X is a key factor deter-
mining performance. A small abstraction cannot significantly
reduce the number of iterations while a large abstraction leads
to a less number of iterations with longer execution time for
each. Therefore, X should be carefully chosen. We will dis-
cuss this trade-off with more details in Section 4.7.

The low-level API provided to users for abstraction genera-
tion is: Select(vector<Edge>& abstract, size_t A).
This Select function can use an arbitrary method to sort the
edges contained in the input abstract vector. After sort-
ing, the first X edges remained while the other edges will be
dumped to disk (line 12-15 of Figure 4).

To ensure good programmability, Wonderland provides two
higher-level APIs. 1) The edge-priority-based selection func-
tion. Specifically, users can define an EdgePriority(Edge
e) function, whose input is an edge and output is this edge’s
priority. With this, the Select function chooses X edges with
highest priorities. 2) A built-in function that generates an ab-
straction that contains as few weakly connected components as
possible. The insight is that, since the abstraction can be used
as bridges that immediately propagate updates from one dis-
joint part of the graph to others, an abstraction should connect
as many vertices as possible. To implement this build-in func-
tion, a disjoint-set [9] data structure is used to automatically
track the connectivity between vertices.
3.3. Reducing Random Disk Accesses
In Wonderland, the property of all the vertices and edges
are contiguously stored on two disk files, which are mapped
into memory via mmap provided by OS. Similar to GridGraph,

4

1 // Input
2 X = size of abstraction
3 B = the number of edges loaded per iteration
4 S = maximum size of each edge grid
5 W = width of grid
6
7 // Generating Abstract
8 abstract = vector<Edge>()
9 on-disk = fstream(...)

10 while not graph.empty()
11 abstract = {abstract, graph.PopN(B)}
12 abstract, deleted = Select(abstract, X)
13 on-disk.write(deleted)
14
15 // Remapping and Partitioning
16 abstract, grids = Partition(abstract, on-disk)
17
18 // Processing Querys
19 foreach query
20 in_memory_graph = {abstract}
21 worklist =
22 BootstrapWorklist(in_memory_graph, query)
23 while not converge
24 // Worklist-based processing
25 while not worklist.empty()
26 u = worklist.pop()
27 for e in in_memory_graph.loaded_edges(u)
28 ProcessEdge(u, e)

29 Append worklist accordingly
30 Update priority of grids accordingly
31 // Bootstrap next iteration
32 {grid1, grid2, ...} = Choose(grids, B)
33 in_memory_graph =
34 {abstract, grid1, grid2, ...}
35 worklist =
36 BootstrapWorklist(in_memory_graph, query)

Figure 4: Refined Workflow of Wonderland.

IDnew=0 …… IDnew=x …… IDnew=|V|-‐1

Abstract vertices Other vertices

Abstract	 Edge	 Grid Grid	 0 Grid	 y……

Vertex
File

Edge
File

Figure 5: Disk Data Organization of Wonderland. Each edge
grid is a sub-graph stored in CSR format, the grids can be
ordered in arbitrary order.

edges are partitioned into grids. With mmap, there are no
explicit disk reads. However, since the vertex and edge file
may be larger than memory, the performance can be severely
affected by many random disk accesses if vertex and edge
data are not properly organized. We consider the random disk
accesses in two scenarios.
Abstraction Different from existing out-of-core systems, ran-
dom disk I/O could be incurred when accessing edges and
related vertices in the abstraction, which could be in any part
of a graph. A straightforward way to reduce the random edge
accesses is to store them contiguously on disk. As shown in
Figure 5, the edges of both abstraction and grids are stored
contiguously in a single file mmap-ed into memory. The edges
of abstraction are stored in the head of this file because the
abstraction is accessed together with all other grids (see line
35 in Figure 4). Since the size of abstraction (e.g., X edges)
is smaller than the machine’s memory, typically the edges in
abstraction are cached in memory.

Although the number of vertices contained in an abstraction
is smaller than X , they may incur random accesses due to the
non-contiguous IDs. To solve this problem, we remap the

original vertex ID to ensure that the accesses to vertices in the
abstraction are re-directed to the head of vertex property file
(as illustrated in Figure 5). For example, consider four vertices
and only vertex 2 and vertex 4 are in the abstraction, the origi-
nally vertices ID=[1,2,3,4] are remapped to IDnew=[2,4,1,3]
to ensure that: 1) all the vertices contained in the abstraction
have smaller IDs than the other vertices; and 2) the original
order is preserved for vertices contained (or not contained)
in the abstraction. In Wonderland, this remapping procedure
is implemented by a binary search on an in-memory vector
which contains all vertices in abstraction. It incurs only one
additional pass of all the edges with O(A) space complexity.
Other Edges The edges not in abstraction are included in
other grids. During processing, the edges in a grid are loaded
into memory, extending the abstraction to form a new in-
memory sub-graph. All edges and vertices of this sub-graph
may be accessed in this iteration. Similar to GridGraph [44],
the disk access locality is ensured by the grid organization.
Specifically, with a user-defined grid width W , the whole graph
is partitioned into d|V |/We×d|V |/We grids.

In Wonderland, the abstraction can be considered as a spe-
cial grid, but not further partitioned. To make sure the in-
memory sub-graph can fit in memory, users define a parameter
S based on memory size to cap the maximum number of edges
in a grid. If a grid contains X edges, it is further partitioned
into dX/Se grids. This further partitioning can be performed
randomly or based on the priority of the edges assigned by
the aforementioned EdgePriority function. The edges in
each grid are contiguously stored in the edge file and is or-
ganized in Compressed Sparse Row (CSR) format, allowing
users to locate all outgoing edges of a vertex in O(1) com-
plexity. Moreover, we require that a grid must be loaded as
a whole: an edge is loaded into memory if and only if all the
edges belonging to the same grid are also loaded. It ensures
that the loaded edges (vertices) are store contiguously in the
edge (vertex) file.

With the principle of radix sort, the grid partitioning pro-
cedure requires only two passes of the edges. The first pass
counts the edges of each grid and the second pass writes edges
to its corresponding locations. Moreover, the first pass of
this partitioning procedure can be merged with the remapping
procedure. Therefore, the whole preprocessing of Wonder-
land requires only three passes of the edges: one for selecting
abstraction and two for remapping and partitioning.
3.4. Execution
Wonderland provides both low-level and high-level APIs
for users to express algorithms. At low-level, users could
define Process(Graph& g) function, where g contains
a member g.loaded_grids, a vector of all the loaded
grids (abstraction is considered as a special grid). For
each grid g.grids[i], the smallest and largest ID of
source vertices are stored in g.grids[i].StartVertex()
and g.grids[i].EndVertex(). For a vertex u, one
can access its outgoing edges by iterating between

5

1 func VertexProgram(Graph& g, Index u)

2 // Iterating loaded edges
3 foreach grid in g.loaded_grids
4 foreach edge in [grid.StartEdge(u),
5 grid.EndEdge(u))
6 ProcessEdge(g.Vertex(u), edge,

7 g.Vertex(edge.destination))
8
9 // Updating priority of grids

10 foreach grid in g.all_grids
11 if u >= grid.EndVertex(): continue
12 if u < grid.StartVertex(): continue
13 UpdatePriority(g.Vertex(u), g.Priority(grid))

Figure 6: Typical Procedure of Processing a Vertex.
g.grids[i].StartEdge(u) and g.grids[i].EndEdge(u).
With the low-level APIs, Wonderland only defines the accessed
region of each process iteration, users can implement arbitrary
processing algorithm.

To ensure good programmability, Wonderland provides a
high-level “Think Like a Vertex”-based interface similar to
existing graph processing systems. Figure 6 shows the typical
procedure of processing a vertex, which is a refined version
of line 29-32 in Figure 4. In this program, g.Vertex(u)
is used to get the writable reference of u’s vertex property,
and g.Priority(grid) is used to get the reference of the
grid’s priority. As one can see, the two-level foreach loop
executes almost the same edge function as GridGraph, the
only difference is that more than one grids can be loaded at
the same time and the abstraction grid is always loaded. The
second one-level foreach loop is optional. One can use it
to update the the grids’ priority. An example of this vertex
program is given in Section 4.2.

In order to automatically parallelize the execution of user-
defined vertex program, we implement a multi-threaded execu-
tor based on the low-level APIs provided by Galois [28]. Es-
sentially, Galois provides a parallel for_each function, which
uses multiple threads to concurrently consume the items con-
tained in the work list. It also enables users to dynamically
insert items to this work list during processing. This workflow
is the same as our processing procedure shown in line 27-32 of
Figure 4. Thus, it is easy to build on top of for_each function
in Galois. In essence, we reuse the execution engine of Galois
but replace its graph data organization part.
3.5. Optimization
Wonderland’s low-level APIs enforce only a few restrictions to
the program: for each process iteration, 1) several edge grids
are loaded to construct an in-memory sub-graph; and 2) only
the vertices and edges in this sub-graph can be accessed during
this iteration. As a result, users can add various optimizations
on top of Wonderland. Examples will be given in Section 4.3.

Among the possible optimizations, the activity optimization
is used very frequently in graph systems. Thus, we add some
syntax sugars to facilitate its usages. Specifically, we add a
bitmap file that is also mmap-ed into memory, and provide user
APIs to set or clean a vertex’s activity via the Graph variable.
This information allows to skip certain grids if they contain no
activated source vertices, which can be easily integrated into
the abstraction-based priority scheduling.

4. Case Study: Shortest Path
To demonstrate the usages of Wonderland, this section presents
a thorough case study of processing shortest path queries.
4.1. Problem and Basic Algorithm
The input of a shortest path query is a weighted graph and two
vertices src and dst. The output is the distance of the shortest
path from src to dst. Edge weights can be negative, but we
assume that there are no negative weight cycles. Similar to
most algorithms that calculate shortest path, we attach a dist
property to every vertex to hold the distance of the shortest
known path from src to that vertex. This property is initial-
ized to 0 for src and ∞ for all the other vertices, which will
be iteratively updated with the relaxation operation: given
an edge (u,v), if dist[u] + w[u,v] < dist[v], then dist[v] is
updated to dist[u] + w[u,v]. When no further relaxations can
be performed, the resulting dist properties will be the shortest
distances from src to all vertices in V .
4.2. Implementation
The vertex program presented in Figure 7 is the basic imple-
mentation of shortest path query in Wonderland. It consists of
two parts: 1) iterating all the loaded outgoing edges of u, per-
forming relaxation if necessary; and 2) updating the priority
of every on-disk edge grid.
Updating Vertices In the first part (line 4-15), the implemen-
tation of Wonderland’s relaxation operation is almost the same
as existing graph systems. For a vertex, the program simply
iterates all outgoing edges (line 6) in all loaded grids (line 5),
performs the relaxation if new_dist is smaller than dst_dist.
The Activate() method of Graph variable g is used to set
the activity bit of the edge’s destination vertex if a relaxation is
performed. One can optionally append the relaxed vertex into
work list, or otherwise, all the loaded vertices are processed
once.
Grid Priority For shortest path, we consider the estimated
lower-bound of distance from src to dst through a path that
uses at least one edge contained in the grid. Clearly, a grid
with smaller lower-bound should have higher priority, thus we
use the negative of this value as its priority.

We define min_expect[i,dst] for a grid[i] and each dst,
which is a pre-calculated value that is the lower bound of
a path starting from an edge in grid[i] to dst. Consider a
vertex u, which is the source of an edge in grid[i], suppose
the current shortest path from src to u is Vertex(u).dist
(not ∞). Assume that for the sources (u′) of all other
edges in grid[i], Vertex(u’).dist is ∞. Then, the prior-
ity of the grid (grid[i].priority) should be updated to
-(Vertex(u).dist+min_expect[i,dst]). Note that the
priority is an approximation, because the edge from u may not
connect to the edge corresponding to min_expect[i,dst]
when it is pre-calculated. However, it is always correct as
the actual distance through u can only be larger. During
relaxation process, if there is another vertex u′, such that
Vertex(u’).dist+min_expect[i,dst] becomes smaller

6

1 func VertexProgram(Graph& g, Index u)

2 float src_dist = g.Vertex(u).dist
3
4 // Iterating loaded edges
5 foreach grid in g.loaded_grids
6 foreach edge in [grid.StartEdge(u),
7 grid.EndEdge(u))
8 float new_dist = src_dist + edge.weight
9 float& dst_dist =

10 g.Vertex(edge.destination).dist
11 if new_dist < dst_dist
12 dst_dist = new_dist
13 g.Activate(edge.destination)
14 // Optional
15 Worklist.push(edge.destination)
16
17 // Updating priority of grids
18 foreach i in [0, g.all_grids.size())
19 Grid& grid = g.all_grids[i]
20 if u >= grid.EndVertex(): continue
21 if u < grid.StartVertex(): continue
22 float new_priority =
23 -(src_dist + min_expect[i,dst])
24 if grid.priority < new_priority
25 grid.priority = new_priority

Figure 7: Pseudocode of shortest path’s vertex program.

than -grid[i].priority, then the priority should be up-
dated to the negative of the smaller lower-bound.

Based on the discussion, for each dst, we need to compute
a min_expect[i,dst], which is not practical. Instead, each
grid[i] only needs to keep one min_expect[i], which is the
minimum edge weight among all edges in grid[i]. This approx-
imation is safe because min_expect[i,dst] is always larger
than min_expect[i], which is only part of the path from an
edge to dst.

The grid priority updating procedure is indicated in line
17-25 of Figure 7. For every scheduled vertex u, we iterate all
the grids (rather than only loaded grids) and update the grid’s
priority if: 1) the grid may contain an edge whose source
vertex is u (line 20-21); and 2) the shortest path from src to
u (src_dist) may lower the estimated lower-bound distance
defined earlier: -(src_dist+min_expect[i]) is larger than
the current grid.priority, line 22-25. Note that iterating all
grids does not lead to extra overhead, because for each grid,
we only access the vertex boundary and priority, instead of
actual edges.

It is important to understand the approximative nature
of the grid priority: besides the conservative estimation of
the lower-bound distance as we have discussed, assuring
u<grid.EndVertex() and u>=grid.StartVertex() does
not necessary mean that there is an edge in this grid starts
from u. The generated loose lower-bound is always correct,
because it is smaller than the actual tight lower-bound. Deter-
mining grid scheduling order based on the loose lower-bound
is also correct, because the order only affect performance but
not correctness.

4.3. Optimization
Abstraction The first, and also the most effective, optimiza-
tion Wonderland supports is abstraction-enabled information
propagation, — reusing an abstraction with X edges in each
process iteration. For shortest path, this abstraction is gener-

ated with a simple method: using the negative of edge weight
as the edge’s priority so that the X edges that have the smallest
weights remain in abstraction. In Section 4.7, we will discuss
the impact of X with evaluation results.
Upper-Bound Since we are processing shortest path queries
rather than calculating a single source shortest path problem,
we can use the current dist property of the dst vertex as the
upper-bound of relaxation. This optimization can be imple-
mented in a straightforward manner by adding an if condition
between line 8 and line 9 to check that whether new_dist is
smaller than g.Vertex(dst).dist. Only if the condition is
true, the following relaxation is actually performed.
Selective Loading There is no need to load a grid if all vertices
between grid.StartVertex() and grid.EndVertex() are
inactive. We integrate this optimization into our priority-based
grid scheduling mechanism. We use a special priority “−∞” to
indicate that all the edges of a grid are not activated. For every
loaded grid, its priority is firstly set to −∞. Then, if some
of its edges are activated, the grid’s priority will be updated
by line 25 in Figure 7. A grid is only loaded and processed
when its priority is not −∞. Moreover, with the upper bound
optimization, we can avoid loading a grid if its estimated
lower-bound is larger than the upper-bound, — current dist
property of the dst.
4.4. Evaluation Environment
To evaluate the effectiveness of Wonderland and its optimiza-
tions, we use a machine with two Intel(R) Xeon(R) CPU
E5-2640 v2 @ 2.00GHz (each has 8-cores), 32GB DRAM
(20MB L3 Cache), and a standard 1TB SSD drive to perform
the experiments. According to our evaluation, the average
throughput of our SSD drive is about 760MB/s for sequential
read. Moreover, in order to demonstrate our ability of reducing
disk I/O, we use cgroup to set various memory limits (from
128MB to 32GB) for every query. Setting the limit to 32GB
ensures that all the graph data can be cached in memory, which
means the system is evaluated in an in-memory environment
rather than out-of-core. Typically, the amount of disk I/O
becomes larger when the memory limit is smaller.
4.5. Performance Comparison
In this section, we compare Wonderland with two other state-
of-the-art systems (i.e., GridGraph [44] and Galois [28]).
We choose GridGraph, because it is reported to be faster
than many other out-of-core systems (e.g., X-Stream [29],
GraphChi [20]). We consider an in-memory system Galois
and its built-in out-of-core version (named LigraChi-g [28])
to show that our abstraction-based optimizations can even
achieve considerable speedups in a full-memory environment.
It is worth noting that the three systems return the same precise
answer (i.e., reach the same convergence condition), thus we
can directly compare their performance.

The time needed for answering a shortest path query de-
pends on input data (i.e., src and dst). We randomly select 30
pairs and report the average of their results. All experiments
use 16 threads and all the reported execution times start from

7

128M 256M 512M 1G 2G 4G 8G

Memory Limit

0

10

20

30

40
T
im

e
 (

in
 s

e
co

n
d
) 34.7

32.4
29.6

40.6

5.23 4.61 3.03

5.21
2.48

1.20

GridGraph

Galois

Wonderland

(a) LiveJournal.

512M 1G 2G 4G 8G 16G 32G

Memory Limit

0

200

400

600

800

1000

1200

1400

T
im

e
 (

in
 s

e
co

n
d
)

681 655 643 632 624 619

1241

137
72.9 60.1 45.6 33.7 24.3 9.31

GridGraph

Galois

Wonderland

(b) Twitter.

Figure 8: The performance of answering shortest path query.

when the time query is submitted. In other words, the prepro-
cessing time (will be discussed later in Section 5.5), which can
be amortized, is not included. We tested all possible parameter
settings (e.g., the grid width in GridGraph, the delta of delta-
Stepping algorithm in Galois) and only report the best results.
The impact of Wonderland’s parameters will be discussed in
Section 4.7 and Section 4.9.

In this case study, we only report the results on LiveJour-
nal [2] and Twitter [19], whose data size are about 790MB and
17GB respectively. Thus, the system is executed in out-of-core
environment only when the memory limit is set to 512MB (for
LiveJournal) and 16GB (for Twitter) or less, respectively. The
results on more datasets are reported later in Section 5.4.
Fully In-Memory Setting As can see from Figure 8, in full-
memory settings (when limit ≥ 1GB for LiveJournal and limit
= 32GB for Twitter), the performance of Galois and Wonder-
land are much better than GridGraph. For example, when
the limit is set to 32G, average execution time of GridGraph,
Galois, and Wonderland are 81.4s, 45.1s, and 9.17s on Twitter,
respectively. This aligns with the recent investigations [31],
which show that a multi-thread Galois program’s performance
is even close to manually optimized native applications. How-
ever, Wonderland can still be 2.1× – 4.9× faster than Galois.
This is not surprising as Wonderland is built on top of the
executor similar to Galois’s and, at the same time, takes ad-
vantage of an abstraction. Similar results have been reported
in recent works that focus on using abstraction in full-memory
environment [18].
Out-of-core Setting Different from the full-memory setting,
the built-in out-of-core version of Galois (i.e., LigraChi-g) is
a simple synchronous executor and is much slower than Grid-

Graph. For Twitter with 16G memory limit, Galois achieves
better performance than GridGraph with the original mmap-
based implementation (i.e., not LigraChi-g), because most
data of Twitter (about 17G) can be cached in memory.

Since Wonderland can largely accelerate the convergence
speed, it is much faster (7.1× - 25.7×) than the better one of
GridGraph and Galois. As we can see from Figure 8, there is a
steep gap between GridGraph’s performance on full-memory
and out-of-core setting, even when the memory limit is enough
for holding a large portion of the data (512MB for LiveJournal
and 16GB for Twitter). This is because that in GridGraph (and
most of the existing out-of-core systems), the input graph data
is partitioned into disjoint parts and these parts are typically
processed one by one in an iteration. Therefore, the first part
is evicted from memory when the system processes the last.
Several existing systems (include GridGraph) have proposed
selectively scheduling methods to skip unnecessary parts, but
the improvement is limited. Although the performance of
GridGraph does not decrease much when the memory limit
is further reduced, it can be considered that GridGraph can-
not take advantage of the extra memory, leading to the poor
performance.

In contrast, Wonderland always caches a proper size of
abstraction in memory and hence achieves better and stable
performance. We show best performance among different
choices of X . More detailed sensitivity study of abstraction
size X on performance will be studied in Section 4.7. The
main reason of Wonderland’s speedup is due to the faster
convergence speed and the corresponding reduced amount
of disk I/O, — the direct benefits from abstraction. In order
to validate our analysis, we check the I/O counters recorded
in /proc/{pid}/io. Results show that the total read bytes
caused by Wonderland can be dozens of times less than existing
systems. To further understand this impact, in Section 4.6, we
will present a piecewise breakdown on the effects of the three
abstraction-based optimizations.
4.6. Piecewise Breakdown
There are mainly three sources of the speedup achieved by
Wonderland: 1) bootstrapping an initial result; 2) abstraction-
enabled information propagation; and 3) abstraction-guided
priority scheduling. In order to quantify the contribution of
each source to the speedup, we perform a piecewise break-
down analysis by incrementally applying them. In Table 1,
the numbers under “Init” column represent the performance
when the abstraction is only used for generating an initial
result. The numbers under “Bridge” column represent the per-
formance when the both first two sources are applied. Finally,
the numbers under “Priority” column are the final performance
of Wonderland with all optimizations enabled.

From Table 1, we see that if the abstraction is only used
for bootstrapping an initial result, its effect on Twitter dramat-
ically decreases from 21× to only 2.2× when the memory
limit is decreased from 16G to 4G. This is reasonable because,
with less memory limit, less edges can remain in abstraction.

8

Table 1: Piecewise Breakdown Analysis.

Dataset Limit
Average Execution Time (in second)

GridGraph Wonderland
Init Bridge Priority

LiveJournal
512M 29.6 15.1 4.79 3.03
256M 32.4 20.1 6.62 4.61
128M 37.7 25.4 8.61 5.23

Twitter
16G 619 28.1 13.1 9.31
8G 624 211 67.6 24.3
4G 632 286 81.31 33.7

0.0 0.1 0.2 0.3 0.4 0.5

Percentage of abstract to total edges, i.e., A/|E|

5

10

15

20

25

30

35

S
p
e
e
d
u
p

Limit = 8G

Limit = 4G

Limit = 2G

Limit = 1G

Figure 9: Impact of the Abstraction Size.
With “Bridge” optimization, an extra speedup on top of “Init”
is achieved in all cases (2×-4×). We also see that such effect
could slightly increase when decreasing memory limit (from
2.2× to 3.5× for Twitter). Our priority-based loading mecha-
nism is also effective as the final performance of Wonderland
is even 1.6×-2.4× faster than “Bridge”. In summary, if the
memory is enough to accommodate a large abstract, the “Init”
optimization contributes most for the speedups. In contrast,
if the memory limit is low, the other two optimizations are
necessary to achieve a good performance. Moreover, even
when 16G memory is given for querying on a 17G dataset (i.e.,
Twitter), the two unique optimizations of Wonderland can still
deliver a 3× speedup.
4.7. Abstraction Size Sensitivity
The size of abstraction (i.e., X) is a crucial parameter that
affects the final performance. More interestingly, it incurs two
opposite effects: 1) the increase of X can reduce the number of
iterations that are required to reach convergence; but 2) since
the abstraction is used to construct the in-memory sub-graph
for every process iteration, the increase of X also increases the
cost of each iteration.

Figure 9 shows the speedups at different ratios between
abstraction size and total edge size (i.e., X/|E|) for different
memory limits. While it is difficult to derive a formula that
can automatically calculate the best X , the results show two
patterns that help us to find the best X efficiently: 1) for all
memory size limits, the curve between speedup and X/|E| is a
unimodal function that first increases and then decreases after a
certain peak; and 2) the position of the peak tends to be smaller
if the memory limit is lower. Nevertheless, for all the four
memory limits (1G-8G) and all the tested X/|E| ∈ [0.001,0.5],
the achieved speedups are always more than 4.5×, — still
considerable without making effort to choose the best X .
4.8. Multi-thread Speedup
The advantage of using multi-thread execution is usually not
very significant for existing out-of-core graph processing sys-
tems, because the main bottleneck of their performance is

disk I/O. For example, according to our evaluation, less than
2.5× speedup is achieved by using 16 rather than 1 thread
in GridGraph. In comparison, Figure 10 presents the results
of executing Wonderland with different number of threads.
It clearly shows that the scalability of Wonderland is better
than GridGraph. This is because that, for every iteration, not
only the loaded edge grid but also the edges in abstraction
need to be processed, leading to a better balance between CPU
and disk I/O. Moreover, since Wonderland requires much less
amount of disk I/O than GridGraph due to faster convergence,
even without using multi-thread execution, the performance of
single-thread Wonderland is better than 16-threads GridGraph.

2 4 6 8 10 12 14 16

Number of Threads

20

40

60

80

100

120

140

160

E
x
e
cu

ti
o
n
 T

im
e
 (

se
co

n
d
)

Limit = 8G

Limit = 4G

Limit = 2G

Limit = 1G

Figure 10: Scalability.

4.9. Grid Partition
The width of grid W and the maximum size of each grid S are
two important parameters. We find that, as long as users do
not choose extreme numbers (e.g., A+S is too large such that
the sub-graph cannot be fully held in memory), they do not
present a significant impact on performance. Typically, setting
S and W so that the size of each edge grid and vertex interval
is about 32MB-64MB can lead to good-enough bandwidth
utilization of the underlying SSD.

5. Other Applications
5.1. Applications
The programming model of Wonderland supports many kinds
of graph applications that do not need to modify edge proper-
ties, i.e., the same scope as X-Stream, GridGraph, and out-of-
core Galois. However, as Wonderland mainly takes advantage
of graph abstraction, the speedup is related to certain property
that is different from other systems.

For graph queries, the answer can be typically obtained by
enumerating “all the paths” in the input graph. However, the
number of paths grows exponentially with the size of graph.
Fortunately, many advanced algorithms enable us to calculate
the result of a given query by only checking a small subset
of all the possible paths. For example, if we have already
found a path with length l between u and v, we do not need
to check any path longer than l to answer the shortest path
query between u and v. We define the selectivity of a specific
graph query as “(number of all the paths)/(number of paths
that are needed to be checked)”. The speedup achieved by
Wonderland is typically positively related to the selectivity of
the input graph query. With these definitions, we divide graph
queries into two categories.

9

Table 2: Real-World Graph Datasets.

Graph Vertices Edges Data Size Type Diameter

LiveJournal [2] 4.85M 69.0M 790MB Directed 15

Twitter [19] 41.7M 1.47B 17GB Directed 13

Friendster [1] 65.6M 1.8B 41GB Undirected 32

Dimacs [3] 23.9M 58.3M 668MB Undirected 8122

Any Path This kind of query can be answered by any path
between two vertices. Querying the reachability between two
vertices is a typical example of any-path query. It is one of
the simplest but important kind of query because it is used
as a subroutine of many other graph algorithms. Moreover,
finding weakly connected components (i.e., WCC) of a graph
is another example of any-path query. Although it does not
require two specific source and destination vertices, it can be
considered as a combined any-path query on all vertex pairs.
All Path This kind of query can only be answered by check-
ing all the paths between two vertices or all the vertices pairs.
Although appearing exhaustive, effective pruning rules can be
defined for many kind of queries in this category, which still
ensure a high selectivity (e.g., shortest path). Another kind of
all-path query is widest path. Specifically, the input of widest
path query is the same as shortest path, i.e., a weighted graph,
a source vertex and a destination vertex. But, rather than mini-
mizing the aggregated weight of the path, widest path query
tries to maximize the weight of the minimum-weight edge in
the path. Similar to all the other three graph applications that
we evaluated, widest path is another fundamental graph opera-
tion with wide application (e.g., finding bandwidth bottleneck
of a network, calculating maximum flow, etc.).

5.2. Methodology
To evaluate the four graph applications discussed earlier, we
use a collection of real-world graphs listed in Table 2. For
undirected graphs, to test WCC, we double the edges to have
them in both direction. For unweighted graphs, a random
weight from (0,1) is attached to every edge for shortest and
widest path. The environment is the same as the one described
in Section 4.4. To ensure consistent comparison, for every
dataset we only report the speedups achieved when the mem-
ory limit is set to 1/2, 1/4 and 1/8 of the input data size. This
makes the memory limit of different dataset different. We
only report the speedup against GridGraph, because it is the
lower bound among all the four existing graph systems we
test (i.e., GridGraph, X-Stream, GraphChi, and out-of-core
Galois). The results are shown in Table 3.
5.3. Any-path Query
For reachability queries, due to the highest selectivity, Won-
derland achieves the highest speedup on this kind of query
(13.5×-376×). Even when only 1GB memory is given, Won-
derland can still response to users within a second-level latency
on a dataset that has 41GB (compared to more than 10 minutes
for GridGraph). More importantly, this significant speedup is
achieved without applying a large modification on the original
BFS-based algorithm that GridGraph uses. Essentially, we

Table 3: Speedup on different datasets and memory limits.
Memory Limit 1/2 1/4 1/8

Reachbility

LiveJournal 19.8× 16.1× 13.5×
Twitter 86.6× 67.0× 45.7×

Frindster 376× 247× 201×
Dimacs 55.3× 39.1× 10.7×

WCC

LiveJournal 4.85× 3.75× 1.82×
Twitter 6.18× 5.90× 3.78×

Frindster 7.11× 6.20× 4.89×
Dimacs 9.03× 4.32× 1.49×

Shortest
Path

LiveJournal 9.92× 8.05× 3.53×
Twitter 24.7× 20.9× 15.4×

Frindster 36.2× 24.2× 17.3×
Dimacs 17.8× 5.91× 2.13×

Widest
Path

LiveJournal 11.3× 6.18× 3.03×
Twitter 9.68× 6.91× 6.04×

Frindster 20.1× 17.5× 11.2×
Dimacs 63.2× 41.3× 2.65×

simply 1) randomly select a subset of the original graph’s edge
set as its abstraction; and 2) set the priority of an activate edge
grid according to a (similar) method described in Section 4.2.

For WCC, its selectivity is much lower because all the
vertices pairs need to be checked. To achieve good speedup,
we enable the connectivity optimization described in Section
3.2 which generates an abstraction that contains as few weakly
connected components as possible. This optimization does
not have a great impact for reachability queries because the
original speedup is already very high. Overall, Wonderland
outperforms GridGraph by 1.49×-9.03×1. Results also show
that the speedup is higher if the input size or the diameter of
the input graph is larger. According to our evaluation, only
an average of 2× speedup is achieved if the WCC application
also uses a randomly selected abstraction. Thus, there exists
a trade-off between query speedup and pre-processing cost,
which will be further studied shortly in Section 5.5.
5.4. All-path Query
The implementation of shortest path query has been discussed
intensively in Section 4. Thus, we simply present results from
more datasets in Table 3, which show that Wonderland can
also achieve a considerable speedup on graph that has larger
size (Friendster) or larger diameter (Dimacs).

The implementation of widest path query is very similar to
the shortest path query. The only differences are: 1) edges with
largest rather than smallest weights remain in the abstraction;
and 2) the priority of an edge grid is decided by the maximum-
weight edge this grid contains. As we can see from Table 3,
the speedups of widest path typically share the same trend
of shortest path queries. The only exception is on Dimacs,
where the speedup largely increases to 41.3× after raising the
memory limit to 1/4 of the data size. This is because, rather
than using the randomly generated weights, Dimacs uses the
real-world weights, which is more skewed and hence most of

1In fact, we also evaluated the connectivity query, which is a single-pair
version of WCC query that simply answers whether two vertices are connected
by an undirected path. The speedup is even higher than reachability queries
even with randomly-selected abstraction.

10

the high-weight edges remain in the abstraction.
5.5. Preprocessing Time
Table 4 presents the pre-processing cost of Wonderland. In this
table, 1) column “Random” means that the abstraction is a ran-
dom subset of the original graph’s edge set, which is enough
for reachability and connectivity queries; 2) column “Order”
means that an edge priority function defined by users is used in
the abstraction generating phase, whose results can be used for
shortest or widest path querying; and 3) column “Connectivity”
means that the connectivity optimization described in Section
3.2 is further enabled.

As we can see from the table, the preprocessing cost of
Wonderland is longer but less than 2× of GridGraph without
the connectivity information. Since the significant speedup
for the following queries could amortize the slightly longer
preprocessing time, the overall execution time of Wonderland
is still smaller than GridGraph even when only one query
is submitted. In fact, the preprocessing cost can be further
amortized by reusing its results. Practically, it is also possible
to merge the preprocessing procedure of multiple kinds of
queries by generating multiple abstractions at the same time.
In our experiments, only about 200s are needed to accomplish
the preprocessing cost of reachability, connectivity, shortest
path, and widest path simultaneously for the Twitter dataset.

Table 4: Preprocessing Cost (in seconds).

Dataset GridGraph Wonderland
Random Order Connectivity

LiveJournal 5.53 7.09 9.15 18.6
Twitter 92.8 101 161 317

Frindster 235 295 398 912
Dimacs 3.79 6.29 6.35 11.6

In contrast, the overhead of connectivity optimization is
relatively high. It is mainly because that our current imple-
mentation simply uses a hash-map-based disjoint-set method,
which does not support concurrent updates. However, since we
actually do not need to precisely maintaining the connectivity
information, it is possible to reduce this cost by approximation
and parallelization, which we leave as the future work.

5.6. Scope of Application

As described in Section 5.1, Wonderland leads to higher
speedup if the original problem has a higher “selectivity”.
Thus, Wonderland can deliver significant speedup for appli-
cations that analysis the graph structures, including the ap-
plications listed above and others like (BFS, MST). More-
over, all the listed applications are basic graph operations that
prevalently used to construct more complex applications like
clustering [32], matching [39], maximum flow [10], commu-
nity or anomaly detection [5, 8], which can all benefit from
the proposed technique. The strong evidence suggests that
Wonderland is applicable for many important kinds of graph
applications. In the other side, according to our evaluation,
although Wonderland can also be faster than GridGraph in

computing SpMV-based algorithms (e.g., PageRank), it is due
to the Galois-like execution engine, but not the abstraction.

Note that it is difficult to define a precise scope of algo-
rithms can be optimized by Wonderland, because different
problems require different abstractions to achieve the best per-
formance. To enhance programmability, we provide simple
APIs for facilitating users to select the abstractions, rather
than design a specific abstraction-generating algorithm like
Kusum et al. [18]. As described in Section 3.2, using our APIs,
abstraction generation only requires a few line of codes. Our
evaluation results firmly validate that these simple abstractions
are sufficient to gain significant speedups.

6. Related Works
Existing works related to out-of-core graph processing and
graph abstraction are discussed in Section 2.1 and Section
2.2, respectively. Our work is different from them in a num-
ber of aspects: 1). To generate abstraction, existing meth-
ods [13,14,16,18,21,24,26,27,30,42] usually require complex
graph transformations that can only be implemented efficiently
in a full memory environment. Thus, they are not applicable
in an out-of-core environment. 2). Existing abstraction-based
methods only use abstraction to generate an initial result. We
propose two novel techniques based abstractions, which are
unique in our work. More importantly, we demonstrate that
each of the three usages deliveries considerable speedup. 3).
Some existing works [18] use abstraction to generate approxi-
mate results. Wonderland always returns precise answers (i.e.,
reach to the same convergence point as Galois/GridGraph).

Some other works, such as CLIP [4] also tries to reduce the
amount of total disk I/O, but it depends on a programming
model that allows the random access of all vertices (but not
all edges). Wonderland does not have this requirement and is
based on the existing vertex programing model. Essentially,
CLIP accelerates convergence by better algorithms (with ran-
dom vertex accesses), Wonderland achieves the same with
abstraction. Another work, GraphQ [38], also uses abstraction
to acclerate graph query. However, GraphQ only accelrates
analytical queries with the form of “find n entities from the
graph with a given quantitative property”. These queries are
by nature can be answered with local information. In contrast,
Wonderland is used for traditional queries that require precise
answer with global information. When GraphQ is used for the
traditional queries (i.e., without a limitation), due to whole-
graph computation requirement and the lack of an effective
merging mechanism, eventually all partitions will be merged
into memory. If a machine does not have enough memory to
store the whole graph, then GraphQ cannot handle the query.

Besides these works, there are also many single-machine
and distributed computing systems that perform graph pro-
cessing in memory [11, 12, 23, 25, 33, 40, 43]. These works are
orthogonal to ours because we focus on problems specific to
the out-of-core environment.

Some existing works [20,35] are proposed to support evolv-

11

ing graphs, which is also orthogonal to this paper. While not
discussed, some of these techniques can be integrated into
Wonderland easily, e.g., the method used for handling adding
edges in GraphChi [20]. Simply caching all the recently added
edges in the abstraction and periodically invoking the Select
function is also a feasible method. As for deleting edges, our
system can support this functionality by attaching a label to
each edge to determine whether it still exists in the graph.
Some works [36] try to enable incremental processing after
deleting edges, which is our future work. However, since
Wonderland’s querying performance is already much higher
than existing systems, we believe a simple re-execution may
be acceptable in many cases.

7. Conclusion
This paper proposes Wonderland, a novel out-of-core graph
processing system based on abstraction with three unique
features: 1) A simple method is proposed to allow users to
extract effective abstractions from the original graph with
acceptable cost and a specific memory limit; 2) Abstraction-
enabled information propagation, where an abstraction can be
used as a bridge over the disjoint on-disk graph partitions; 3)
Abstraction-guided priority scheduling, where an abstraction
can infer the better priority-based order in processing on-disk
graph partitions. Wonderland is a significant advance over the
state-of-the-art because it not only makes graph abstraction
feasible to out-of-core systems, but also broadens the applica-
tions of the concept in important ways. Evaluation results on
Wonderland reveal that Wonderland achieves a drastic speedup
over the other state-of-the-art systems, — up to two orders of
magnitude for certain cases.

References
[1] S. N. A. Project. Stanford large network dataset collec-

tion. http://snap.stanford.edu/data/com-Friendster.html.
[2] S. N. A. Project. Stanford large network dataset collec-

tion. http://snap.stanford.edu/data/soc-LiveJournal1.html.
[3] The Center for Discrete Mathematics and Theoretical Computer Sci-

ence. http://www.dis.uniroma1.it /challenge9/download.shtml.
[4] Zhiyuan Ai, Mingxing Zhang, Yongwei Wu, Xuehai Qian, Kang Chen,

and Weimin Zheng. Squeezing out all the value of loaded data: An
out-of-core graph processing system with reduced disk i/o. In 2017
USENIX Annual Technical Conference (USENIX ATC 17), pages 125–
137, Santa Clara, CA, 2017. USENIX Association.

[5] Leman Akoglu, Hanghang Tong, and Danai Koutra. Graph based
anomaly detection and description: A survey. Data Min. Knowl. Dis-
cov., 29(3):626–688, May 2015.

[6] David A. Bader, Shiva Kintali, Kamesh Madduri, and Milena Mihail.
Approximating betweenness centrality. In Proceedings of the 5th
International Conference on Algorithms and Models for the Web-graph,
WAW’07, pages 124–137, Berlin, Heidelberg, 2007. Springer-Verlag.

[7] Bernard Chazelle, Ronitt Rubinfeld, and Luca Trevisan. Approximat-
ing the minimum spanning tree weight in sublinear time. In Proceed-
ings of the 28th International Colloquium on Automata, Languages
and Programming,, ICALP ’01, pages 190–200, London, UK, UK,
2001. Springer-Verlag.

[8] Santo Fortunato. Community detection in graphs. Physics reports,
486(3):75–174, 2010.

[9] Harold N Gabow and Robert Endre Tarjan. A linear-time algorithm for
a special case of disjoint set union. Journal of computer and system
sciences, 30(2):209–221, 1985.

[10] Andrew V. Goldberg and Robert E. Tarjan. Efficient maximum flow
algorithms. Commun. ACM, 57(8):82–89, August 2014.

[11] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and
Carlos Guestrin. Powergraph: Distributed graph-parallel computation
on natural graphs. In Presented as part of the 10th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 12), pages
17–30, 2012.

[12] Joseph E Gonzalez, Reynold S Xin, Ankur Dave, Daniel Crankshaw,
Michael J Franklin, and Ion Stoica. Graphx: Graph processing in
a distributed dataflow framework. In 11th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 14), pages 599–
613, 2014.

[13] Bruce Hendrickson and Robert Leland. A multilevel algorithm for
partitioning graphs. In Proceedings of the 1995 ACM/IEEE Conference
on Supercomputing, Supercomputing ’95, New York, NY, USA, 1995.
ACM.

[14] George Karypis and Vipin Kumar. A fast and high quality multi-
level scheme for partitioning irregular graphs. SIAM J. Sci. Comput.,
20(1):359–392, December 1998.

[15] George Karypis and Vipin Kumar. Multilevelk-way partitioning
scheme for irregular graphs. J. Parallel Distrib. Comput., 48(1):96–129,
January 1998.

[16] A. A. Khan, M. U. Khan, and M. Iqbal. Multilevel graph partitioning
scheme to solve traveling salesman problem. In 2012 Ninth Inter-
national Conference on Information Technology - New Generations,
pages 458–463, April 2012.

[17] Pradeep Kumar and H. Howie Huang. G-store: High-performance
graph store for trillion-edge processing. In Proceedings of the Inter-
national Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’16, pages 71:1–71:12, Piscataway, NJ, USA,
2016. IEEE Press.

[18] Amlan Kusum, Keval Vora, Rajiv Gupta, and Iulian Neamtiu. Efficient
processing of large graphs via input reduction. In Proceedings of the
25th ACM International Symposium on High-Performance Parallel
and Distributed Computing, HPDC ’16, pages 245–257, New York,
NY, USA, 2016. ACM.

[19] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. What
is twitter, a social network or a news media? In Proceedings of the 19th
international conference on World wide web, pages 591–600. ACM,
2010.

[20] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. Graphchi: large-
scale graph computation on just a pc. In Presented as part of the 10th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 12), pages 31–46, 2012.

[21] Kristen LeFevre and Evimaria Terzi. Grass: Graph structure summa-
rization. In Proceedings of the 2010 SIAM International Conference
on Data Mining, pages 454–465. SIAM, 2010.

[22] Hang Liu and H. Howie Huang. Graphene: Fine-grained io manage-
ment for graph computing. In 15th USENIX Conference on File and
Storage Technologies (FAST 17), pages 285–300, Santa Clara, CA,
2017. USENIX Association.

[23] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin,
Aapo Kyrola, and Joseph M Hellerstein. Distributed graphlab: a frame-
work for machine learning and data mining in the cloud. Proceedings
of the VLDB Endowment, 5(8):716–727, 2012.

[24] M. Riondato and D. Garcia-Soriano and F. Bonchi. Graph summariza-
tion with quality guarantees. In 2014 IEEE International Conference
on Data Mining, pages 947–952, Dec 2014.

[25] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehn-
ert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: a system
for large-scale graph processing. In Proceedings of the 2010 ACM
SIGMOD International Conference on Management of data, pages
135–146. ACM, 2010.

[26] Irene Moulitsas and George Karypis. Multilevel algorithms for gener-
ating coarse grids for multigrid methods. In Proceedings of the 2001
ACM/IEEE Conference on Supercomputing, SC ’01, pages 45–45, New
York, NY, USA, 2001. ACM.

[27] Danupon Nanongkai. Distributed approximation algorithms for
weighted shortest paths. In Proceedings of the Forty-sixth Annual
ACM Symposium on Theory of Computing, STOC ’14, pages 565–573,
New York, NY, USA, 2014. ACM.

[28] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. A lightweight
infrastructure for graph analytics. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles, pages 456–471.
ACM, 2013.

[29] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. X-stream: edge-
centric graph processing using streaming partitions. In Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems Principles,
pages 472–488. ACM, 2013.

12

[30] Ning Ruan, Ruoming Jin, and Yan Huang. Distance preserving graph
simplification. In Proceedings of the 2011 IEEE 11th International
Conference on Data Mining, ICDM ’11, pages 1200–1205, Washing-
ton, DC, USA, 2011. IEEE Computer Society.

[31] Nadathur Satish, Narayanan Sundaram, Md. Mostofa Ali Patwary, Ji-
won Seo, Jongsoo Park, M. Amber Hassaan, Shubho Sengupta, Zhaom-
ing Yin, and Pradeep Dubey. Navigating the maze of graph analytics
frameworks using massive graph datasets. In Proceedings of the 2014
ACM SIGMOD International Conference on Management of Data,
SIGMOD ’14, pages 979–990, New York, NY, USA, 2014. ACM.

[32] Satu Elisa Schaeffer. Survey: Graph clustering. Comput. Sci. Rev.,
1(1):27–64, August 2007.

[33] Jiaxin Shi, Youyang Yao, Rong Chen, Haibo Chen, and Feifei Li.
Fast and concurrent rdf queries with rdma-based distributed graph
exploration. In 12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 16), pages 317–332, GA, 2016. USENIX
Association.

[34] Yuanyuan Tian, Richard A. Hankins, and Jignesh M. Patel. Efficient
aggregation for graph summarization. In Proceedings of the 2008 ACM
SIGMOD International Conference on Management of Data, SIGMOD
’08, pages 567–580, New York, NY, USA, 2008. ACM.

[35] Keval Vora, Rajiv Gupta, and Guoqing Xu. Synergistic analysis of
evolving graphs. ACM Transactions on Architecture and Code Opti-
mization (TACO), 13(4):32, 2016.

[36] Keval Vora, Rajiv Gupta, and Guoqing Xu. Kickstarter: Fast and accu-
rate computations on streaming graphs via trimmed approximations.
ASPLOS, 2017.

[37] Keval Vora, Guoqing Xu, and Rajiv Gupta. Load the edges you need:
A generic i/o optimization for disk-based graph processing. In 2016
USENIX Annual Technical Conference (USENIX ATC 16). USENIX
Association, 2016.

[38] Kai Wang, Guoqing Xu, Zhendong Su, and Yu David Liu. Graphq:
Graph query processing with abstraction refinement: Scalable and
programmable analytics over very large graphs on a single pc. In Pro-
ceedings of the 2015 USENIX Conference on Usenix Annual Technical
Conference, USENIX ATC ’15, pages 387–401, Berkeley, CA, USA,
2015. USENIX Association.

[39] Junchi Yan, Xu-Cheng Yin, Weiyao Lin, Cheng Deng, Hongyuan Zha,
and Xiaokang Yang. A short survey of recent advances in graph match-
ing. In Proceedings of the 2016 ACM on International Conference
on Multimedia Retrieval, ICMR ’16, pages 167–174, New York, NY,
USA, 2016. ACM.

[40] Mingxing Zhang, Yongwei Wu, Kang Chen, Xuehai Qian, Xue Li,
and Weimin Zheng. Exploring the hidden dimension in graph pro-
cessing. In 12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 16), pages 285–300, GA, 2016. USENIX
Association.

[41] Da Zheng, Disa Mhembere, Randal Burns, Joshua Vogelstein, Carey E
Priebe, and Alexander S Szalay. Flashgraph: Processing billion-node
graphs on an array of commodity ssds. In 13th USENIX Conference
on File and Storage Technologies (FAST 15), pages 45–58, 2015.

[42] Fang Zhou, Sebastien Malher, and Hannu Toivonen. Network simplifi-
cation with minimal loss of connectivity. In Proceedings of the 2010
IEEE International Conference on Data Mining, ICDM ’10, pages
659–668, Washington, DC, USA, 2010. IEEE Computer Society.

[43] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma.
Gemini: A computation-centric distributed graph processing system. In
12th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 16), pages 301–316, GA, 2016. USENIX Association.

[44] Xiaowei Zhu, Wentao Han, and Wenguang Chen. Gridgraph: Large-
scale graph processing on a single machine using 2-level hierarchical
partitioning. In 2015 USENIX Annual Technical Conference (USENIX
ATC 15), pages 375–386, 2015.

13

	Introduction
	Background
	Out-of-core Graph Processing
	Graph Abstraction
	Open Problem: Applying Graph Abstraction to Out-Of-Core Systems.

	Wonderland
	System Overview
	Abstraction Generation
	Reducing Random Disk Accesses
	Execution
	Optimization

	Case Study: Shortest Path
	Problem and Basic Algorithm
	Implementation
	Optimization
	Evaluation Environment
	Performance Comparison
	Piecewise Breakdown
	Abstraction Size Sensitivity
	Multi-thread Speedup
	Grid Partition

	Other Applications
	Applications
	Methodology
	Any-path Query
	All-path Query
	Preprocessing Time
	Scope of Application

	Related Works
	Conclusion

