GraphQ: Scalable PIM-Based Graph Processing

Youwei Zhuo Mingxing Zhang Rui Wang

Chao Wang jamesOzan@gmail.com wangrui@buaa.edu.cn
youweizh@usc.edu Tsinghua University Beihang University
wang484@usc.edu

University of Southern California
Dimin Niu Yanzhi Wang Xuehai Qian
dimin.niu@gmail.com yanz.wang@northeastern.edu xuehai.qian@usc.edu
Alibaba Inc Northeastern University University of Southern California

ABSTRACT

Processing-In-Memory (PIM) architectures based on recent tech-
nology advances (e.g., Hybrid Memory Cube) demonstrate great
potential for graph processing. However, existing solutions did
not address the key challenge of graph processing—irregular data
movements.

This paper proposes GraphQ, an improved PIM-based graph
processing architecture over recent architecture Tesseract, that fun-
damentally eliminates irregular data movements. GraphQ is inspired
by ideas from distributed graph processing and irregular applica-
tions to enable static and structured communication with runtime
and architecture co-design. Specifically, GraphQ realizes: 1) batched
and overlapped inter-cube communication by reordering vertex pro-
cessing order; 2) streamlined intra-cube communication by using
heterogeneous cores for different access types. Moreover, to tackle
the discrepancy between inter-cube and inter-node bandwidth, we
propose a hybrid execution model that performs additional local
computation during the inter-node communication. This model
is general enough and applicable to asynchronous iterative algo-
rithms that can tolerate bounded stale values. Putting all together,
GraphQ simultaneously maximizes intra-cube, inter-cube, and inter-
node communication throughput. In a zSim-based simulator with
five real-world graphs and four algorithms, GraphQ achieves on
average 3.3X and maximum 13.9X speedup, 81% energy saving com-
pared with Tesseract. We show that increasing memory size in PIM
also proportionally increases compute capability: a 4-node GraphQ
achieves 98.34X speedup compared with a single node with the
same memory size and conventional memory hierarchy.

CCS CONCEPTS

« Computer systems organization — Parallel architectures; «
Hardware — 3D integrated circuits; Emerging architectures.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MICRO °52, October 12—16, 2019, Columbus, OH, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6938-1/19/10...$15.00
https://doi.org/10.1145/3352460.3358256

KEYWORDS

graph analytics, data movement, memory systems, 3D-stacked
memory, processing-in-memory, near-data processing

ACM Reference Format:

Youwei Zhuo, Chao Wang, Mingxing Zhang, Rui Wang, Dimin Niu, Yanzhi
Wang, and Xuehai Qian. 2019. GraphQ: Scalable PIM-Based Graph Process-
ing. In MICRO °52: The 52nd Annual IEEE/ACM International Symposium on
Microarchitecture, October 12-16, 2019, Columbus, OH, USA. ACM, New York,
NY, USA, 14 pages. https://doi.org/10.1145/3352460.3358256

1 INTRODUCTION

Graphs capture relationships between data items, such as interac-
tions or dependencies. Graph analytics have emerged as an impor-
tant way to understand the relationships between heterogeneous
types of data, allowing data analysts to draw valuable insights from
patterns in the data for a wide range of applications, including ma-
chine learning tasks [69], natural language processing [4, 20, 70],
anomaly detection [52, 62, 68], clustering [55, 58], recommenda-
tion [17, 21, 38, 44], social influence analysis [9, 63, 67], bioinfor-
matics [3, 16, 29].

To improve programmability, graph-oriented programming model,
e.g., vertex program [26, 40, 43] can easily express graph algorithms
by allowing programmers to “think as the vertex”. Programmers
can express algorithms in vertex and edge function based on neigh-
bor vertices. A graph can be represented as an adjacency matrix,
where each element represents an edge between a source and a
destination. Typically, the adjacency matrix is sparse and stored
in compressed representation. One example is Compressed Sparse
Row (CSR), which has three arrays: 1) vertex array stores vertices
sequentially with each entry pointing to the start of the vertex’s
outgoing edge list; 2) edge array stores the edges of each vertex
sequentially; and 3) compute array keeps the updates of the desti-
nation vertex when each edge is processed. The accesses to vertex
and edge array are mostly sequential, but accesses to compute ar-
ray are random. Moreover, graph algorithms require high memory
bandwidth since they perform a small amount of computation on
randomly accessed data.

In essence, the two problems are both irregular data movements
in conventional memory hierarchy. Processing-In-Memory (PIM)
can reduce data movement between memory and computation by
placing computing logic inside memory dies. Though once believed
to be impractical, PIM recently becomes an attractive architec-
ture due to the emerging 3D stacked memory technology, such as

https://doi.org/10.1145/3352460.3358256
https://doi.org/10.1145/3352460.3358256

MICRO ’52, October 12-16, 2019, Columbus, OH, USA

Hybrid Memory Cube (HMC) [12] and High Bandwidth Memory
(HBM) [31]. In general, the architecture is composed of multiple
memory cubes connected by external links (e.g., SerDes links in
HMC with 120GB/s per link). Within each cube, multiple DRAM
dies are stacked with Through Silicon Via (TSV) and provide higher
internal memory bandwidth up to 320GB/s. At the bottom of the
dies, computation logic (e.g., simple cores) can be embedded. Per-
forming computation at in-memory compute logic can reduce data
movements in memory hierarchy. More importantly, PIM provides
“memory-capacity-proportional” bandwidth and scalability.

Tesseract [1] is a PIM-based graph processing architecture that
supports vertex programming model with architectural primitives
to enable inter-cube communication. GraphP [72] is another archi-
tecture that co-designs the programming model and architecture to
reduce inter-cube communication. The two schemes only reduce
data movement but did not change its irregular nature, which has
two implications.

The first problem is the high overhead in handling small mes-
sages in inter-cube communication with unpredictable arrival time.
This communication is determined by graph partition, i.e., the graph
data is partitioned into memory cubes. For an edge, if source and
destination vertices are assigned to different cubes, inter-cube com-
munication is required to update the corresponding remote compute
array entry. Such communication is unpredictable since it depends
on the processing order of destination vertices. In Tesseract, remote
cubes handles inter-cube message with interrupt and executes a
function to perform the update. Due to the unpredictable message
arrival time, it incurs performance overhead since the receiver
cube’s local execution is interrupted. In addition, it will lead to load
imbalance since some cube can receive more messages. It is ideal if
each cube knows when the messages will arrive from which source.

Second, processing cores in a cube perform both sequential ac-
cesses to vertex and edge array and random accesses to compute
array. This access pattern destructs cache locality with interfer-
ence. Moreover, locality is further affected by performing remote
compute array update requests during inter-cube communication.

Third, all prior architectures are based on a single PIM node.
To support multi-node, while vertex programming model requires
no change, the runtime system can be transparently extended to
map remote destination vertex updates to either inter-cube or inter-
node communication, the key challenge is the substantial lower
bandwidth of inter-node communication (6GB/s) compared to inter-
cube (120GB/s) and intra-cube (360GB/s) communication.

To address the challenges, this paper proposes GraphQ, an im-
proved PIM-based graph processing architecture over the recent
architecture Tesseract that eliminates irregular data movements.
GraphQ is inspired by ideas from distributed graph processing and
irregular applications to enable static and structured communica-
tion with runtime and architecture co-design. Specifically, GraphQ
realizes: 1) batched and overlapped inter-cube communication by
reordering vertex processing order; 2) streamlined inter-cube com-
munication by using heterogeneous cores for different access types
to eliminate the interference. Moreover, GraphQ is the first PIM-
based graph processing architecture that supports multi-node. To
tackle the discrepancy between inter-cube and inter-node commu-
nication bandwidth, we propose a hybrid execution model that
is a midpoint between synchronous and asynchronous execution,

Zhuo, et al.

performing additional local iterations during the long inter-node
communication. This model is general enough and can be applied
to asynchronous iterative algorithms tolerate bounded stale val-
ues [66]. Putting all together, GraphQ simultaneously maximizes
intra-cube, inter-cube, and inter-node communication throughput.
No code modification is required since the runtime system trans-
parently realizes the ideas with minor architecture supports.

GraphH [13] is another PIM graph processing architecture that
uses interconnection reconfiguration and relies on the host proces-
sor to control the switch status of all connections. Perhaps it is most
closely related since it also reduces the irregularity of inter-cube
data movement. Unlike GraphQ, GraphH only improves inter-cube
communication and is purely implemented in hardware and cannot
enjoy the flexibility of our co-designed approach.

We evaluate GraphQ with a zSim-based simulator using five real-
world graphs and four algorithms, the results show that GraphQ
achieves on average 3.3X and maximum 13.9X speedup, 81% energy
saving compared with Tesseract. Comparing with GraphP, GraphQ
achieves more speedup to Tesseract. With the hybrid model, a
4-node GraphQ achieves an average speedup of 2.98x compared
with single-node GraphQ, and 98.34Xx speedup compared with a
single node with the same memory size using conventional memory
hierarchy.

2 BACKGROUND AND MOTIVATIONS
2.1 Basics of Graph Processing
Table 1: Vertex Programming APIs

Function Input Output

processEdge source vertex value partial update
reduce reduced/partial update reduced update
apply reduced update/old value new value

1 for (v « Graph.vertices) {
for (e « outEdges(v)) {

N

3 res = processEdge(e, v.value, ...)

4 u « compl[e.dest]

5 u.temp = reduce(u.temp, res)

6 3

7%

g8 for (v « Graph.vertices) {

9 v.value, v.active = apply(comp[v].temp, v.value)

Figure 1: Vertex Programming Model

A graph G is defined as an ordered pair (V, E), where V is a set
of vertices connected by E, a set of edges. To ease the development
of graph algorithms, several domain-specific programming models
based on “think like a vertex” principle are proposed, such as vertex
program [40], gather-apply-scatter program [19], amorphous data-
parallel program [51] and some other frameworks [57]. Among
them, vertex program is supported by many software and hardware
accelerated graph processing frameworks, including Tesseract [1],
GraphLab [39], and Graphicionado [22]. Figure 1 lists the semantics
of three APIs of vertex program. Figure 1 shows a general graph
application expressed with these primitives.

GraphQ: Scalable PIM-Based Graph Processing

Processing-In-Memory (PIM)

i Cube
i Vault DRAM Layers

e e

Node 0 Node 1 Node 2 Node 3 iemttep 1 51191 Silcon
L1068/ | <——ia (TsV)

4
Intra-Cube bandwidth; -091° Layer
Inter-Node bandwidth: 6GB/s | 360G8/s
| Inter-Cube bandwidth:
120G8/s per link

Figure 2: Processing-In-Memory Architecture

During processing, each vertex in vertex array is visited and all its
outgoing edges in edge array are processed, involving three steps. 1)
process: for each outgoing edge e of vertex v, function processEdge
computes the contribution of source vertex v through edge e to
the destination vertex u (accessed in line 4). 2) reduce: from the
perspective of u, a new update returned by processEdge (res) is
combined using a reduce function with the existing value of u in
compute array, i.e., U.temp, incurring a random access. 3) apply:
after the whole graph is processed in an iteration, the new value
of each vertex in compute array is applied to vertex array with
the apply function. In an iterative graph algorithm, the procedure
repeats multiple iterations until certain convergence condition has
been reached.

We can summarize two characteristics of graph processing: ran-
dom accesses to compute array (line 4); the high ratio of memory
accesses to computation (processEdge is typically simple). As a
result, graph algorithms incur random accesses and require high
memory bandwidth.

2.2 Processing-In-Memory

Processing-In-Memory (PIM) architecture reduces data movements
by performing computations close to where the data are stored.
3D memory technologies (e.g., Hybrid Memory Cubes (HMC) [12]
and High Bandwidth Memory (HBM) [31]) make PIM feasible by
integrating memory dies and compute logic in the same package,
achieving high memory bandwidth and low latency.

Similar to Tesseract and GraphP, this paper considers a general
PIM architecture (shown in Figure 2) that captures key features
of specific PIM implementations. The architecture is composed of
multiple cubes connected by external links (e.g., SerDes links in
HMC with 120GB/s per link). Within each cube, multiple DRAM
dies are stacked with Through Silicon Via (TSV) and provide higher
internal memory bandwidth up to 320GB/s. At the bottom of the
dies, computational logics (e.g., simple cores) could be embedded.
In Tesseract [1], a small single-issue in-order core is placed at the
logic die of each vault. It is feasible because the area of 32 ARM
Cortex-A5 processors including an FPU (0.68 mm? for each core [5])
corresponds to only 9.6% of the area of an 8 Gb DRAM die area (e.g.,
226 mm? [56]). GraphQ assumes the same setting. With 16 cubes,
the whole system delivers 5 TB/s memory bandwidth, considerably
larger than conventional memory systems. Moreover, the memory
bandwidth grows proportionally with capacity in a scalable manner.

2.3 PIM-Based Graph Processing

Tesseract [1] is a PIM-based graph processing accelerator with 16
cubes. Tesseract provides low-level primitives to support vertex
program model. For each vertex, the program iterates over all its
edges/neighbors and executes a put function for each of them. The
signature of this put function is put(id, void* func, void#

MICRO ’52, October 12-16, 2019, Columbus, OH, USA

il 0
destination vertices irregular message from 2
- . cube 0 > cube 2] a
@ i ¢ 0003
s e remote func (v) . Q 152 8
=] cube 0 S v h M 5
5 process é % 158 §
8 o . ® & batching g § 251§
=1 M cube 1 | o558
3 o . S o I
2] 39 2238 £
. " . 38 22738
apply @ cube 2 S8 3227
) S5 3256
$3 358¢
. . $% ook
LI . . cube 3 28 5268

.
B 00 82%¢@

(a) Inter—cube communication (b) Intra—cube accesses

Figure 3: Tesseract Communication and Access Pattern

arg, size_t arg_size, voidx prefethch_addr). It executes a
function call func with argument arg on the id-th cube, therefore
it could be either 1) a remote call if the destination vertex resides
on a different cube from source vertex; or otherwise 2) a local
function call. In the end, a barrier ensures that all operations in
one iteration are performed before the next iteration.

Figure 3 (a) shows the inter-cube communication in an adja-
cency matrix view, where the rows and columns correspond to the
source and destination vertex of edges, and each dot is an edge. All
vertices are partitioned among four cubes—each cube is assigned
to a set of rows. The circled dot represents an edge from a vertex
in cube 0 to a vertex in cube 2: (v; — vj), which corresponds to an
inter-cube message from cube 0 to cube 2. Thus, each edge across
cubes incurs such a message and the destination cube is determined
by the graph structure (e.g., the destination of the edge). These small
and irregular inter-cube messages are generated during execution
to unpredictable destination cube at any time.

On the receiver side, the core is interrupted to execute the remote
function, incurring overhead due to context switch. Tesseract uses
batching to mitigate interrupt overhead by buffering the received
remote function calls in a queue and executing multiple functions
together at certain point later. It can be seen as the square in Figure 3
(a): the functions corresponding to the edges inside the square are
executed in batch by a core in remote cube. Due to the large number
of inter-cube messages, batches generated are too small to offset
the performance impact of interrupt overhead.

Moreover, irregular communication between cubes may incur
imbalanced load and hardware utilization. Due to graph-dependent
communication pattern, when messages are sent to the same cube
from different senders, its message queues may become full and put
backpressure on the network to prevent senders from generating
more messages. In this case, cores in the receiver cube will be
overwhelmed by handling remote function call requests without
making progress in processing its local data.

Finally, the dynamic communication pattern leads to excessive
energy consumption of inter-cube links. To save energy, each inter-
cube link can be set to a low-power state (e.g., the Power-Down
mode in HMC [23]). However, this optimization is not applicable
to the scenario when the message can be sent at any time.

Figure 3 shows the problem with intra-cube data movement.
If the destination of an edge is in the local cube, a local apply
is performed, which incurs random accesses and causes locality
interference. Specifically, accesses to vertex array (@) and edge
array (@) are sequential reads. However, the accesses to compute
array for the destination vertices are random (). Besides, remote
function call also incur random accesses.

MICRO ’52, October 12-16, 2019, Columbus, OH, USA

GraphH [13] shares some similarity with GraphQ on reducing
irregularity of inter-cube communication, we defer the comparison
to Section 3.4 after a thorough explanation of ideas of GraphQ.

2.4 Lessons Learned and Design Principles

We believe that an efficient PIM-based architecture should ideally
satisfy three requirements. First, inter-cube communication should
be predictable, i.e., each cube should know exactly when the message
will arrive from which source cube. This would largely eliminate
the interrupt overhead in the current designs. There will be still
overhead on the receiving cube side to execute the remote function,
but these operations will not interfere with the current processing
on that cube since they happen at known times. Second, inter-
cube data movement should be handled by heterogeneous cores in a
decoupled manner due to the different access patterns. It is critical
to reduce interference given that data from different array share
the same cache. Third, the multi-node PIM-based graph processing
architecture must efficiently handle the large discrepancy of inter-
node, inter-cube, and intra-cube bandwidth. The bottom line is that
the design should achieve speedup over the conventional memory
hierarchy with the same memory size when the graph data are
distributed into the PIMs of all nodes.

3 GRAPHQ ARCHITECTURE

We propose GraphQ, the first multi-node PIM-based graph process-
ing architecture built on the recent work Tesseract. Our solution is
inspired by techniques in distributed graph processing and irregular
applications, but they have never been applied and investigated in
the context of PIM. To mitigate the interrupt handling overhead,
GraphQ uses predictable inter-cube communication, which is sup-
ported by simple reordering of edge processing order according to
graph partition in cubes. To enable efficient intra-cube data move-
ment, we divide the cores in a cube into two heterogeneous groups.
To hide long inter-node communication latency, we propose a hy-
brid execution model to perform additional local computations
during inter-node communication.

3.1 Predictable Inter-Cube Communication

Batched Communication We propose an execution model that
supports predictable and batched communication, which is enabled
by two key ideas. Shown in Figure 4, the reduce step is performed in
the source cube. For each edge, instead of sending the function and
parameters to a remote cube, the source cube locally reduces the
values for each destination vertex. In the matrix view, the reduced
value is generated in the cube of the source vertices of edges in the
same column. Second, we generate all messages for the same remote
cube together, so that they can be naturally batched. We partition
the whole matrix into blocks, each of which contains the edges that
will contribute to the batched message between a pair of cubes. For
example, the third block in the first row will generate a batched
message from cube 0 to cube 2.

In GraphQ, apply step in each cube is performed by reducing
(N — 1) batched messages from other cubes, where N is the num-
ber of cubes. In our example, N = 4, the cube 2 will reduce the
three batched messages in different colors and then update its local
vertices with new values.

Zhuo, et al.

destination vertices patched message
_—

batched message

0
©
o L] P * siibe-0 cube 0 > cube 2
T
[process - ? -
@ [i
2 . . SIELY combine
g . cube 1 block
3 LI Y Q o
7] -~ M (]
= .
l ..
. °
apply = . cube 2 . o
°
[[)
. . °
. . . cube 3 ® .
. o . L] hd

Figure 4: Batched Communication in GraphQ

destination vertices (CUPe_id ;e 0 cube 1 cube2 cube 3
—_— > EOCK_IG)

1

é 0.10.203)]0Fcube0 YOO vy oy vy process round0
5 process/comm round 1

2 [(1:2](1,3)[1,0)|(1,1)|cube 1 .reduce . 5
g process/comm

o

&

8
(2,3)|(2,0)[(2,1)|(2,2)|cube 2 round 2 g

process/comm |\ 3

3,0)3,1)(3,2)(3.3) cube 3
round 0 1 2 3 L ...aeply Y
(a) GraphQ Execution

Figure 5: Overlapped Computation and Communication

(b) Regular and Overlapped Communication

Rounded Execution The batched communication enables new
optimization to support the overlap of communication and compu-
tation with balanced execution. The insight is illustrated in Figure 5.
We use the (cube_id, block_id) pair to indicate the source and desti-
nation of the batched messages. The order of batched messages is
determined by the order of blocks in each cube (from left to right
in the figure). For example, cube 1 should first process the block
(1,2), which will generate a batched message from cube 1 to cube
2. We call this execution model as rounded execution, where each
iteration is divided into M rounds, M is the number of cubes. The
rounded execution is synchronous, which means that all cubes have
to finish one round before entering the next. With four cubes, there
are in total four rounds. The key insight is that, after one round,
each cube will only generate one batched message for one remote
cube. Following this principle, the destination cubes should be “in-
terleaved”: in the first round, cube 0 generates a message to cube 1,
cube 1 generates a message to cube 2, etc. With the starting rounds
in all cubes determined, it is easy to derive the others: each cube
only need to process the increasing rounds after the first one. For
the first (M — 1) rounds, the destinations of batched messages are
organized in a circulant manner. The last round is the same for all
cubes: they process the block that will generate only local updates
and no inter-cube messages.

At the end of each round, a barrier ensures that all cubes receive
the batched message. When all batched messages are received in all
cubes, they perform reduce, which accumulate the updates from the
source cube. After that, the batched message buffer can be reclaimed
and is available to be used by the next round. Therefore, only one
receive message buffer is needed for each cube. Since rounds are
executed synchronously, the load imbalance among different cubes
in the same round may increase execution time. We study this
effect by comparing the sum of maximum cube computation in
each round (for rounded execution) with the maximum of the sum
of cube computation in all rounds (for no rounded execution). For
graphs used in our evaluation, we report the results in Section 5.

In summary, rounded execution enables balanced execution with
two properties: a) the batched messages from previous round can

GraphQ: Scalable PIM-Based Graph Processing

S o
@m

% & 0 ® 00 ©

@ © ®

o e e

Example Graph Cube 0 Cube 1 Cube 2
Round 1: {02,133} {25,3>4} {40}
Round 2: {125} {20,221} {42,523}
Round 3: 01} I} 54}

Figure 6: Example of GraphQ

be overlapped with the execution of the current round, so the
messages can be sent in the non-blocking manner; and b) each cube
only receives one batched message in one round, so only one receive
buffer is needed. Note that the irregular inter-cube communication
cannot achieve full overlapping, it is the fundamental difference
between GraphQ and GraphP/Tesseract. In fact, GraphP tried the
idea of overlapping but the results showed that benefits are little.
Therefore, GraphP and GraphQ are orthogonal.

Figure 6 shows a concrete example based on a small graph. Sup-
pose we have three cubes, the vertices partitioned into each cube are
indicated with different colors. On the right, we show the vertices
and edges assigned to each cube. The edges processed in different
rounds are shown in the color of the destination cube. The edge
sets processed in each cube/round are also shown below.
Preprocessing Preprocessing is common for all graph processing
frameworks, including both Tesseract and GraphQ. There are two
common preprocessing steps: (1) convert graph in text format, e.g.,
SNAP (Stanford Network Analysis Project) format [35] or Matrix
Market format [48], to binary graph data structure, e.g., CSR (Com-
pressed Sparse Row); (2) partition the graph among cubes. GraphQ
requires an additional step to group edge block for each round
together to enable batched communication. This incurs small over-
head because it does not require an extra iteration over the input.
Specifically, during graph partition, we can maintain an edge list
for each remote cube, each edge is placed into the corresponding
edge list based on its destination vertex. In the end, the edge lists
are concatenated together to generate the new combined edge list
for each cube.

For graphs used in the simulation, the total preprocessing time
is within 3 seconds in a single-thread implementation. Table 2
compares preprocessing time of several large graphs in seconds
between GraphQ and Tesseract, we can see that the overhead for
both schemes are low, considering it is a an one-time overhead that
can be amortized over executions. The difference between the two is
the additional overhead due to edge reordering in GraphQ, e.g., for
R-MAT-Scale27, GraphQ requires about additional 10s to preprocess
the graph. The increases in all three large graphs are less than 10%.
In general, the one-time preprocessing time and execution time of
graph processing systems are reported separately [11, 19, 73].

Table 2: Preprocessing overhead for large graph datasets

Graphs 4 |E| | Tesseract | GraphQ
Twitter-2010 [28] (TW) | 42M | 1.5B | 36.7 39.7
Friendster [34] (FR) 66M | 1.8B 53.5 58.2
R-MAT-Scale27 [10] (R27) | 134M | 4.3B | 130.2 140.2

3.2 Decoupled Intra-Cube Data Movements

We put the intra-cube architecture of GraphQ in the same context
with the conventional multicore and Tesseract. Figure 8 (a) shows

MICRO ’52, October 12-16, 2019, Columbus, OH, USA

—| —|

Units F. On-chip Netwotk Units

C. c?t‘rfhe A Send | |. Scratchpad
wi

Prefetcher Bufer l Memory
A. Edges Memory J. Send Buffer

B. Vertex States || L+ Temp Vertex
States

K.Recv Buffer

Figure 7: GraphQ Intra-Cube Architecture

a conventional multicore architecture, where a last-level shared
cache is placed below private caches. While shared cache facilitates
the inter-core communication, it causes a series of issues, including
data races which require atomic operations/locks, and coherence
protocol. Given the poor locality of graph processing applications,
conventional cache hierarchy is not effective.

In comparison, Tesseract eliminates the shared cache and only
use a small private cache for each core and a simple prefetcher, as
shown in Figure 8 (b). Without the shared cache, Tesseract uses
message passing for intra-cube communication, using the same
mechanism as inter-cube communication. Specifically, each core
has a message queue, a global router of each cube inspects the local
message queues and sends messages to any core (local or remote) in
the system. Without a shared cache, write accesses directly update
memory. Since atomic operations and locks are much slower in
memory, Tesseract avoids using them by assigning a disjoint set of
vertices for each cube to update.

The intra-cube architecture of GraphQ is shown in Figure 8 (c),
which has two key differences compared with Tesseract. First, inter-
cube and intra-cube data movements are handled separately. For
inter-cube communication, batch messages are generated in batch
message buffer in memory and sent by routers in our runtime sys-
tem (see Section 4.3). Intra-cube messages are handled by message
queues and local routers, because the message source and desti-
nation are within the same cube. Second, sequential and random
accesses are processed separately.

We divide the cores in the same cube into two groups: Process
Units (PUs), which execute processEdge function and generate
update messages, involving sequential vertex and edge reads in
vertex/edge array; and Apply Units (AUs), which directly receive
messages from PUs and perform reduce and apply function, in-
volving random accesses to vertices in compute array. This organi-
zation eliminates locality interference. Moreover, we replace the
private cache attached to each AU with scratchpad memory (SPM),
serving as a buffer of vertex values with contiguous ID. Each AU
randomly accesses on-chip SPM, which provides shorter latency
and higher bandwidth than L1 cache. At the end of a round, the
batched message is ready in SPM and can be written sequentially
to batched message buffer in memory. While the functionalities
of PUs and AUs are different, they are actually a subset of a more
general core in Tesseract. For larger graphs when all destination
vertices can not fit into SPMs, we will have sub-partitions (more
details in Section 4.3.2). The ratio between PUs and AUs are deter-
mined empirically and we show the performance of different ratios
in Section 5.5.

MICRO ’52, October 12-16, 2019, Columbus, OH, USA

x
lobal MRouter Local MRouter
Core | | Core |é\,/_\: | | 7 x
Queue MQueue] Queu Queue
Cache| |Cache
Process | Apply

Core Core Unit Unit
Shared Cache
Cache| |Cache refetch SPM

‘ Memory

Memory

Memory ‘

(c) GraphCube Intra-cube

(a) Converntional Multicore ~ (b) Tesseract Intra-cube
Multicore

Multicore

Figure 8: Intra-Cube Architecture Comparison

Node Node 1
Gl c2 ca c4 Gl c2 3 oo

Bottleneck distanceli]

Inter-node
message 2]3]4]s

distancel[i]
8 1J2]s]4]s]e]7]s

<«— lteration —»

init init

local

Node Node 1 globall
S0 o o oo o o Jocal

local

s s|s|s]s]e]~

globalt global4
i | “;Cla; Unified iterations
§1 global
§ - local
% L i gé local
? — : ¥ i Hybrid execution
(a) Hybrid Execution (b) Running Example

Figure 9: Hybrid Execution Model
3.3 Tolerating Inter-Node Latency

The key challenge of multi-node PIM system is the long inter-node
communication latency. Due to the large gap shown in Figure 2, the
conventional communication and computation overlapping cannot
fully hide such long latency. Figure 9 (a) shows the scenario when
the idea of batched and overlapped communication in Section 3.1 is
applied to inter-node communication. Unfortunately, the execution
of next iteration finishes long before receiving the batched message
from a remote node, during this time, each node is idle. According
to our experiments, inter-node communication takes 82% to 91% of
total execution time, which implies significant time wasted waiting
for remote node messages. Note that this issue may get worse in
Tesseract because a cube could send and receive both inter-cube
and inter-node message at any time, the large latency difference
will result in more imbalanced execution.

To solve this problem, we propose a simple but effective bandwidth-
aware hybrid execution model, that performs potentially useful
computation during idle time. The idea is shown in Figure 9 (a).
When each node finishes the execution of an iteration and has
to wait for the remote batched message, they can run more itera-
tions based on local subgraph. In this way, the PIM of each node
can make use of the idle wait cycles to perform local computation.
Specifically, we call the normal iteration as global iteration, which is
composed of multiple local iterations. In a global iteration, the first
local iteration is performed after the most recent remote updates are
received, the other local iterations are performed based on local sub-
graph only. In other words, each node runs several local iterations
“asynchronously” within the cube before a global synchronization
among node at the end of the global iteration. The mechanism pro-
posed in Section 3.1 is still applicable to the local iteration, which
is composed of several rounds. During inter-node communication,
the loads for local iterations in different nodes can be different,

Zhuo, et al.

but since it is opportunistic and all overlapped with much longer
inter-node communication, such imbalance is not an issue. This
model matches the hierarchical bandwidth in multi-node PIM by
overlapping the longer inter-node communication with more local
computation. Essentially, this design presents a mid-point between
synchronous and asynchronous execution model—inside a global
iteration, the nodes execute asynchronously.

In general, the hybrid execution model is applicable for asynchro-
nous iterative algorithms as defined in ASPIRE [66] that can tolerate
stale values. The computations that are left behind can be viewed
to generate stale values. As long as the system can ensure bounded
staleness, the results are correct, and there is no need to recovery
re-computation. ASPIRE ensures such property by maintaining the
staleness information with each vertex. In our hybrid model, since
the global synchronization will eventually happen, the staleness
is also bounded. All the four algorithms we evaluated (BFS, WCC,
PageRank and SSSP) belong to this algorithm category. We experi-
mentally confirmed that they all produce the correct results. Note
that the property is proved in [66]. The intuition of the correct-
ness is that, the remote intermediate results (e.g., shortest path in
other subgraphs) will eventually be propagated to the local node
and “correct” the potentially staled local results. Similar idea was
applied in out-of-core system [2], where the subgraph loaded into
memory (the other parts are in disk) are processed with multiple
iterations. The purpose is to tolerate longer disk access latency. We
uniquely apply the idea in multi-node PIM architecture.

Figure 9 (b) shows a running example of Single Source Shortest
Path (SSSP) with Bellman-Ford algorithm [7]. We compare hybrid
execution model with unified iterations. The graph is partitioned
into two nodes, indicated in different colors. On the bottom left, we
show the change of distance vector using hybrid execution. We can
see that the whole execution incurs three global iterations, they are
marked by different colors. The edges in the graph that result in
inter-node communication are also marked with the corresponding
colors. We can see that during the first global iteration, three local
iterations are executed. During the second one, only one local
iterations is executed—this case is the same as unified iteration.
During the third global iteration, two local iterations are executed.
On the bottom right, we show the change of distance vector with
unified iterations. We can see that in total four global iterations are
needed—one iteration more than the hybrid execution. Note that it
is a small example showing the insights, the iteration reduction is
only one. In real graphs, as we show in the evaluation, the benefit
is significant.

The hybrid execution model is general and widely applicable,
because many algorithms executed in the graph parallel execution
model are asynchronous and iterative. The parallel version of a
certain algorithm is typically different from the optimal sequential
version. For example, Dijkstra algorithm for SSSP [15] is sequential
and difficult to parallelize. For this reason, the graph processing
framework normally uses the non-optimal (i.e., may lead to redun-
dant work) but more relaxed iterative algorithms (e.g., Bellman-
Ford algorithm [7] for SSSP) which are more amendable for parallel
execution. The hybrid execution is applicable to all such relaxed
iterative algorithms used in parallel graph processing. It is possible
to support sequential optimal algorithms (e.g., Dijkstra) in a type

GraphQ: Scalable PIM-Based Graph Processing

of architecture that can execute logically sequential tasks in par-
allel with speculative execution, e.g., Ordered Parallelism [24, 45].
Since PIM does not provide the architectural supports required for
speculative tasks and most parallel graph processing frameworks
have not yet considered that option, we leave it as future work.

3.4 Novelty and Discussion
GraphQ is inspired by the ideas in distributed graph processing
and irregular applications. It does not weaken the contribution of
this paper because: 1) we are the first to investigate the benefits in
the context of PIM with detailed architecture model; and 2) some
subtle but important differences exist.

The communication and computation overlapping are well-known
optimizations in high performance computing [14, 54]. Our archi-
tectural model captures key aspects such as the reduction of com-
munication energy and each core’s interrupt overhead. They are not
considered in distributed graph processing (e.g., Gemini [73]). The
idea of local reduction near sources is explored in PowerGraph [19].
However, it is only one technique (among the three) that enables
the predictable and batched communication in GraphQ.

The more subtle distinction is batching. Grappa [47] and AS-
PIRE [66] are two closely related recent work. They are both latency-
tolerant distributed shared memory (DSM) system and use batching
to reduce communication overhead. The key difference between
GraphQ is message aggregation. In Grappa and ASPIRE, the mes-
sage aggregation is dynamic and unstructured, which means that if
the sender accumulates several messages for the same destination,
a batched message can be formed and sent to the receiver. It is
dynamic because the aggregation is determined by the runtime
processing order of vertices and the graph. Due to the unstruc-
tured batching, the communication is still irregular. In comparison,
the message aggregation in GraphQ is static and structured, which
means that the messages to the same destination are forced to be
generated and sent. As a result, the communication becomes regu-
lar. In fact, the batching mechanism in Tesseract is exactly dynamic
and unstructured: during one iteration, a cube can send multiple
batched messages to the same remote cube. In GraphQ, a cube can
only send one batched message to the same remote cube. Tesseract
is more similar to Grappa and ASPIRE. Moreover, due to regular
communication, GraphQ enables link power down.

Both Grappa and ASPIRE require an outstanding thread or core
to manage communication. In particular, ASPIRE needs to maintain
the per-vertex information on staleness. While it is possible to have
such support in a DSM with a x86 core working on a full-fledged
NIC, it is infeasible to implement in PIM.

Next, we discuss two closely related schemes. GraphH [13] also
uses the idea of rounded execution and batching. It is implemented
by reconfiguring interconnection network and relies on the host
processor to control the switch status of all connections. Instead,
GraphQ only requires lightweight hardware primitives. We believe
that our approach is more flexible and incurs much less hardware
modifications. Nevertheless, besides rounded execution that en-
hance the efficiency of inter-cube communication. GraphP [72]
uses replicas to reduce inter-cube communication, converting one
message per inter-cube edge to one message per replica synchro-
nization. However, such replica synchronization still incurs irreg-
ular communication, making it suffer from the similar drawbacks

MICRO ’52, October 12-16, 2019, Columbus, OH, USA

as Tesseract. The irregular communication in GraphP also limits
its capability to overlap communication with computation, which
explains the reported minor improvement (Figure 10 and 11 in [72]).
In summary, the key takeaway in GraphQ is that, the static
and structured communication pattern is critical to achieve good
throughput and performance on PIM-based architecture.

4 GRAPHQ IMPLEMENTATION

GraphQ is implemented by runtime and architecture co-design:
the architecture provides the communication and synchronization
primitives; and runtime system orchestrates the execution of the
user-defined functions with batched inter-cube communication and
decoupled intra-cube data movements using architectural primi-
tives. The proposed techniques are transparently implemented, thus
require no code modification. Similar to other graph processing
frameworks, GraphQ is fully compatible with the widely-used ver-
tex programming model. Programmers only need to define three
functions: processEdge, reduce, apply.

4.1 Architectural Primitives

4.1.1 Inter-Cube: Batched Communication.
Communication Primitives GraphQ architecture provides three
inter-cube primitives: initBatch, sendBatch, recvBatch.

To initiate communication, each cube registers its send and re-
ceive buffer through initBatch. The local router allocates two
shadow send and receive buffer in memory, and initializes status
flags for each buffer. These flags keep track of buffer availability.

The sendBatch is, in essence, buffered non-blocking asynchro-
nous send. This primitive offloads the send operation to router after
the send buffer in memory is copied to its corresponding shadow
buffer, so that the computation can proceed and send buffer can be
reused. Before starting writing to remote buffer, the router checks
the flag of remote shadow receive buffer to make sure that it can
be overwritten.

The recvBatch is blocking synchronous and does not require
any parameters. In our ordered batched communication, the source
cube id of messages can be inferred from round ID. The status of
receive buffer indicates whether new messages have arrived. If
so, the messages are copied from shadow receive buffer to receive
buffer in memory and flags are reset. The reduce function can be
executed only after receiving updates from remote cubes, except
the last round.

Inter-cube Link In GraphQ, with respect to one intercube routing
algorithm, we know at static time that some links are idle in the
entire round. Moreover, at runtime, when the communication time
is overlapped by computation, we can set the links to idle or sleep
mode when the communication has completed. In HMC, this is can
be achieved by setting the “Power-Down” signal according to HMC
specification 2.1 [12]. We also take into consideration the link state
transition time (150 ps). The benefit of this optimization is more
prominent when the graph size is larger, because the transition
time will become negligible.

4.1.2 Intra-Cube: Specialized Message Passing.

Compute Units GraphQ uses single-issue in-order cores in the
logic dies to meet the thermal and area requirements. We leverage
heterogeneous cores to fully utilize the high memory bandwidth.

MICRO ’52, October 12-16, 2019, Columbus, OH, USA

Process Unit (PU) is responsible for sequentially reading vertices
and edges from memory and performing operations (processEdge).
A simple stride prefetcher is employed to match the high memory
bandwidth and hide latency. The output of PUs are update messages
to be sent to AUs through the on-chip network.

Apply Unit (AU) receives update messages from PUs, performs
reduce, and writes (apply) destination vertices with random ac-
cesses. In essence, AUs prepare the batched messages to be sent to
a remote cube at the end of a round. Instead of using a prefetcher,
we replace the private cache of each core with a programmer con-
trolled scratchpad memory (SPM) as data cache. On one hand, SPM
is faster than L1 cache. On the other hand, SPM allows the soft-
ware to explicitly allocate space in SPM, and vertex data will not
be evicted due to cache replacements.

The PUs and AUs in a cube form a data movement pipeline: PUs
continuously perform data processing and send update messages
to AUs through on-chip interconnect; AUs randomly fill SPM with
the reduced updates. In the end of a round, the prepared batched
message is written sequentially from SPM to send buffer in memory.
On-chip Interconnect In order to support the pipelined data
movements from PU to AU, GraphQ provides primitives: Send,
Recv, Sync; and architecture supports: local router, message queues,
interconnection between cores for intra-cube communication. The
separation of inter-cube and intra-cube communication leads to
simpler interconnect and router design and lower pressure to hard-
ware resources. In our implementation, each PU has a send queue
and each AU has a receive queue. The local router is responsible
for moving data from send queues of PUs to receive queues of AUs.

Send is executed asynchronously. For a PU, sending a message
simply means moving data from register to its send queue and
continuing the execution without waiting for any return value. The
message transfer will be handled by the local router. Recv fetches
one message from queue. When a new message arrives, AU uses
Recv to move it from receive queue to register. Sync is a signal
emitted by PUs to notify all AUs in the same cube, indicating that
it has reached the end of a round.

Although Send is asynchronous, it can block a PU when its
send queue is full. This is a common problem for both Tesseract and
GraphQ. However, because GraphQ’s on-chip network only handles
intra-cube communication, in practice we can choose proper queues
capacity (less than that in Tesseract) to buffer the incoming send
messages.

To avoid the overhead of context switch, we implement the prim-
itives by extending the instruction set of PU and AU. In addition,
reading from or writing to message queue takes one cycle, without
stalling processor pipeline. It is reasonable for the small intra-cube
messages of graph applications, in which the essential operation is
updating vertex values. Typically, the vertex value has basic data
type less than 64 bits, such as int or float. It is true for all appli-
cations evaluated in the paper. With 64-bits vertex ID, the message
size is only 128 bit.

4.2 Parameter Consideration

In the implementation, we need to decide certain key parameters.
The first is the number of PUs and AUs. The total number of cores
is limited by the size of logic die per cube. The number of PUs

Zhuo, et al.

should fully exploit memory bandwidth. For example, in HMC, the
available internal bandwidth is 320 GB/s. Suppose the PUs run at 1
GHz and a prefetcher of 64B works perfectly with sequential pattern,
6 PUs are enough. In contrast, AUs should be able to consume the
stream of messages from PUs and clear the receive queue in time.
We tune these parameters so that the execution is rarely blocked
by hardware resources limitation. In GraphQ, the number of PUs
and AUs are both 8, and the queue size is 16.

The second issue is the size of scratchpad memory. In Tesseract,
the compute unit is ARM Cortex A5, with configurable L1 data
cache from 4KB up to 64KB. We expect our program-controlled
SPM has capacity of the same order and thus use 64KB SPM per
AU. In total, we have 864 KB SPMs per cube, which can hold 128K
vertex values of 4 Bytes. Since in one round, only 1/16 of total
vertices can be destination, graphs with less than 2M (16*128K)
vertices can be completely held in SPMs. If the input graph size
increases, we can further divide the vertices into more blocks as
we will see later in Section 4.3.2.

4.3 GraphQ Runtime System

GraphQ allows programmers to specify graph applications using
vertex programming interface; and the mechanisms for regular
communication and data movements are supported transparently
by runtime system. Due to space limit, we do not include inter-
node supports, but it is similar to inter-cube. The number of local
iterations in a global iteration can be specified as a parameter.
For intra-cube execution, we will first explain the case when the
memory usage of destination vertices does not exceed the SPM
capacity, and then discuss the solution to scale to larger graphs at
the end of Section 4.3.2.

4.3.1 Inter-Cube Communication. Figure 10 shows the pseudocode
for one iteration concurrently executed in each cube based on
vertex programming API and batched communication primitives.
The current cube ID is stored in myId, ranging from 0 to (cubeNum-
1), cubeNum is the total number of cubes. The source and destination
of cube ID of inter-cube communication in a round is fromId and
told, respectively. To enable batched communication, three local
buffers are used for each cube. They are sendBuffer, which buffers
the updates to be sent to remote cubes in each round; recvBuffer,
which buffers the updates received from other cubes by the end of
each round; and tempBuffer, which stores the partially reduced
values.

In each round, graph blocks corresponding to destinations in
cube told are streamed in (line 7 and 8), update messages are gen-
erated (line 9) and reduced in sendBuffer (line 10). At the end
of the round, i.e., computation has finished, each cube performs
inter-cube communication (line 13 and 14). During the period of
rounds, updates from remote cube in the previous round are re-
ceived with recvBuf with recvBatch primitive (line 20) and re-
duced in tempBuffer (line 22). Updates in sendBuffer are trans-
ferred in batch using sendBatch primitive (line 14).

In the first round, we will not call recvBatch (if-statement at line
19), because no messages are expected to arrive in round 0: the first
batched message will be sent in the end of round 0, which will be
received by the end of round 1, so the overlapped computation and
communication starts from round 1. In the last round, sendBatch

GraphQ: Scalable PIM-Based Graph Processing

1 sendBuf = local Array[DataTypel]

2 recvBuf = local Array[DataType]

3 tempBuf = local Array[DataType] //partially reduced
values

4 InitBatch(sendBuf, recvBuf)

5 for (roundId = @; roundId < cubeNum; roundId++) {

6 told = (myId + roundId + 1) % cubeNum

7 for (v <- GraphBlock.vertices) {

8 for (u <- outNbrs(v)) { //overlapped with comm

9

res = processEdge(u.value, v.value, ...)
10 sendBuf (u) = reduce(sendBuf(u), res)
1 }
12 }
13 if (roundId != (cubeNum-1)) { //end of each round
14 SendBatch(toId) //except last round
15 } else { //end of last round
16 for (v <- Partition.vertices)
17 tempBuf (v) = reduce(tempBuf(v),
sendBuf(v)) //local reduce
18 }
19 if (roundId != 0) {
20 RecvBatch() //each round except first
21 for (v <- Partition.vertices)
22 tempBuf (v) = reduce(tempBuf(v),
recvBuf(v)) //per-round reduce
23 }
24}
25 for (v <- Partition.vertices) //final apply
26 v.value, v.active = apply(tempBuf(v), v.value)

Figure 10: Ordered Batch Inter-cube Communication Code

1 for (v <- Partition.vertices) {

2 for (e <- GraphBlock.outEdges(v)) {

3 res = processEdge(e, v.value, ...)
4 Send(res)

5 3

6

7 Sync()

Figure 11: Process Unit Code

is omitted (if-statement at line 13), because in round (cubeNum-1)
the generated updates should be reduced locally.

Note that, while sendBuf (line 10) is nonblocking, the whole
batched send communication might be blocked. It is because the
sender needs to wait until the remote shadow receive buffer be-
comes available. As discussed in Section 4.1.1, this is ensured by
the semantic of sendBatch primitive: the router will automatically
check whether the shadow buffer on remote cube is available, if
not, the data is kept in shadow send buffer and wait.

Finally, after finishing the rounded execution (in line 17) updates

from local cube (i.e., in sendBuf) and remote cubes in this iteration
have already been reduced (i.e., in tempBuf). The finally reduced
updates are applied to vertex states (line 26), which will be used as
new vertex states in the next iteration.
4.3.2 Intra-Cube Message Passing. In Figure 10, computation in
each round (line 10 to 16 and line 18 to 23) is modified to leverage
the pipelined heterogeneous compute units. The runtime operations
for PUs and AUs are shown in Figure 11 and 12, respectively.

MICRO ’52, October 12-16, 2019, Columbus, OH, USA

1 buffer = Arary[DataType]

2 countSync = @

3 while (countSync < numPU) {

4 msg = Recv()

5 msg match {

6 case Sync() => countSync++

7 case Send(uData, uAddr) =>

8 buffer(uAddr) = reduce(buffer(uAddr), uData)
9 3

10 3}
11 buffer.flush()

Figure 12: Apply Unit Code

The code in PU resembles the original program in Figure 10,
except that the reduce function is replaced with send. The graph
blocks in each PU is further divided and organized as a contiguous
region in memory. Hence, all memory accesses in PU are sequential,
which can benefit from the high intra-cube memory bandwidth.
When all edges in its block have been processed, PU broadcasts
sync message to all AUs in the same cube.

As shown in Figure 12, an AU allocates a buffer in SPM, as a
copy of sendBuffer in Figure 10. AU uses a counter countSync
to keep track of the number of PUs synced. The main body of
AU implementation is a while-loop, which keeps peeking message
queues with the Recv primitive. Once a new message arrives, the
data is reduced in buffer residing in SPM. If the message is a Sync,
countSync is increased. The loop exits when sync messages from
all PUs have been received. Finally, each AU will flush the buffer in
SPM to memory with sequential writes.

When the graph is larger, the
destination vertices can not fit
into the SPMs. GraphQ will di-
vide the destination vertices to

smaller sub-partitions and run the 1;1 ;::ss
intra-cube execution for each sub- B reduce
partition. Figure 13 shows the | oo
intra-cube execution of one round

for one cube in matrix view of a Figure 13: GraphQ

graph. In the figure, we have 4 Intra-Cube Execution
PUs, 4 AUs and 2 sub-partitions. Each sub-partition contains edges
with half destination vertices subset. In the first run, only 3 edges
will be processed by PUs, and they all have the same destination
vertex assigned to AU3. After all the edges are applied, we synchro-
nize and start the next run. In this way, we can run arbitrary large
graphs while all the apply operations fall in SPMs.

5 EVALUATION

5.1 Evaluation Methodology

We evaluate GraphQ based on zSim [53], a scalable x86-64 multicore
simulator. We modified zSim according to HMC’s memory and inter-
connection model, heterogeneous compute units, on-chip network
and other hardware features. While zSim does not natively support
HMC interconnection simulation, we insert a NOC layer between
LLC and memory to simulate different intra-cube and inter-cube
memory bandwidth. The results are validated against NDP [18]. For
compute units, we use 256 single-issue in-order cores in Tesseract

MICRO ’52, October 12-16, 2019, Columbus, OH, USA

Table 3: Graphs Datasets

Graphs #Vertices | #Edges
ego-Twitter (TT) [42] 81K 2.4M
Soc-Slashdot0902 (SD) [36] 82K 0.95M
Amazon0302 (AZ) [32] 262K 1.2M
Wiki (WK) [8] 42M 101M
LiveJournal (LJ) [36] 4.8M 69M

and GraphP. Each core has 32KB L1 instruction cache and 64K L1
data cache. Cache line size is 64B and simulation frequency is 1000
MHz. In GraphQ, we also use the same number of cores-256 in total,
in which 128 are PUs and 128 are AUs. PU has a 64B prefetcher
with 4KB buffer and AU has a 64KB scratchpad memory. Each core
has a 16-entry message queue and 32KB L1 instruction cache, with
no L2 or shared cache. For memory configuration, we use 16 cubes
(8 GB capacity, 512 banks). The cubes are connected with the Drag-
onfly topology [27]. The maximal internal data bandwidth of each
cube is 320GB/s. We run four widely-used application benchmarks:
Breadth-First Search (BFS), Weakly Connected Component (WCC),
PageRank(PR) [50], Single Source Shortest (SSSP). ! Figure 3 shows
the graph datasets that we use in our experiment respectively. The
dataset is similar as in GraphP, where we replace WikiVote [33]
with a larger Wiki graph. 2

The energy consumption of the inter-cube interconnect is esti-
mated as two components: a) The dynamic consumption, which
is proportional to the number of flit transfer events that happen
among each pair of cubes; and b) the static consumption, which
corresponds to the energy cost when the interconnect is plugged in
power but in idle state (i.e., no transfer event happens). We use zSim
to count the number of transfer events and use ORION 3.0 [25] to
model the dynamic and static power of each router. We calculate
the leakage energy of the whole interconnect from the flit transfers.
We also validated Table 1 in [64] with McPAT [37].

5.2 Comparing with Tesseract

From Figure 14, GraphQ achieves 1.1x - 14x speedup across all
four benchmarks with different graph inputs. Specifically, for WC-
C/PageRank with batching, the maximum speedups reach 6x/4x.
When the intra-cube optimization is enabled, the further increase to
16x/6x. BFS and SSSP achieve less maximum speedup (2x-3x). The
reason is that WCC and Pagerank are “all-active” benchmarks, i.e.,
all vertices in the graph are active in each iteration, while BFS and
SSSP only enable partial vertices and edges. Thus WCC and Pager-
ank benefit more from batching communication. While there are
other algorithms for WCC and PageRank that does not require all-
active execution, we use the all-active in this paper (same in many
other publications [22, 72-74]) to demonstrate the performance
characteristics in various application settings.

Figure 15 shows the time breakdown. In GraphQ, computation
and communication cannot fully overlap. The interruption adds
extra overhead of about 10%, and synchronization taks 10% to 50%
time. In GraphQ, two parts are almost invisible: communication

IFor BFS, we do not use direction-switch optimization. For SSSP, We run Bellman-Ford
algorithm for fixed number of iterations.

2We do not use road graphs because the dataset are relatively small to fit in one
memory cube.

Zhuo, et al.

bfs wcc pagerank Sssp

- 0- 0- .0 -
TT SD AZ WK LJ TT SD AZ WK L TT SD AZ WK LJ TT SD AZ WK LJ
BN Tesseract MMM GraphQ Intercube M GraphQ Intercube&intracube EEE GraphP

Figure 14: Performance

bfs sssp pagerank wcc
10w m- -
0.81F
B
306
°
i~
©
o
<04
0.24F
0.0~
TT SD AZWK L) TT SD AZWK L) TT SD AZWK L) TT SD AZWK LJ
Bl Tesseract:Computation B GraphQ:Computation
I Tesseract:Interrupt B GraphQ:Communication

B Tesseract:Communication . GraphQ:Intra-cube Synchronization
B Tesseract:Synchronization B GraphQ:Inter-cube Synchronization

Figure 15: Execution time breakdown

is overlapped by computation; intra-cube synchronization (among
compute units in the same cube) is low. The inter-cube synchroniza-
tion percentage is high. In some cases it reaches 60% and is higher
than Tesseract. However, considering that GraphQ total execution
time is less, the absolute time wasted in synchronization is still less
in GraphQ. The conclusion is that overall GraphQ regular batch
communication is better than Tesseract irregular peer-to-peer com-
munication. We admit that the current design has much room for
improvement to reduce synchronization and achieves better load
balance.

Figure 16 illustrates total bytes transferred by inter-cube routers,
with results normalized to Tesseract. Compared with Tesseract,
GraphQ reduces the communication amount by at least 70% in all
experiments. First, Tesseract inter-cube global routers are respon-
sible for handling both inter-cube and intra-cube communication,
while intra-cube messages in GraphQ are sent through on-die net-
work and not counted (Section 3.2). Second, the batch optimization
in inter-cube communication combines some messages at the sender
size (Section 3.1). Note that when running BFS and SSSP on work-
load AZ in GraphQ, the inter-cube transfer amount is negligible.
This is because AZ has good locality and most updates are applied
in the same cube without generating inter-cube messages.

5.3 Comparing with GraphP

We also implement GraphP and quantitatively compare it with
GraphQ. Among the four common graph datasets, the overall per-
formance of GraphQ is consistently better: GraphQ speedup is 3.2x
on average and 13.9x at maximum, while GraphP is only 1.6x and

GraphQ: Scalable PIM-Based Graph Processing

bfs wcc pagerank sssp
1.0 .o p.o p.o
0.8 8 p.s p.8
0.6 p.6 p.6 p.6
0.4 p.4 p.4 p.4
0.2 .2 2 2
0.0

- 0.0 4
TT SD AZ WK L) TT SD AZ WK LJ
B Tesseract B GraphQ Intercube

- 0.0 - 0.0
TT SD AZ WK U TT SD AZ WK L)

Figure 16: Communication

bfs wcc pagerank sssp

0 - 0- -
TT SD AZ WK L) TT SD AZ WK LJ TT SD AZWK U TT SD AZ WK L)

B Tesseract
mmm GraphQ Intercube

GraphQ Intercube&Intracube
= GraphQ LP

Em GraphP

Figure 17: Energy Consumption

3.9x. In GraphP, overlapping is not effective: in several dataset ap-
plying the technique leads to slower result due to the dynamic
execution. GraphQ enables efficient overlapping with structured
batching. Moreover, GraphQ benefits from intra-cube optimization,
which is considered in GraphP. The pipelined architecture leverages
the high local memory bandwidth and accelerate the computation
further by 56%.

5.4 Energy Consumption

Figure 17 shows the interconnect energy consumption of GraphQ
compared with Tesseract. As we can see, batching contributes from
10% to 85% reduction and batching with PU/AU optimization con-
tributes up to 90% reduction in energy cost in most of our exper-
iment runs. The energy cost of the interconnect consists of both
the static consumption and the dynamic consumption, which are
determined by the execution time (performance) and communica-
tion amount, respectively. Figure 17 also demonstrates the energy
cost with cubes’ low-power option enabled. We see that GraphQ’s
capability of setting the low-power option further saves around 50%
- 80% of energy across all benchmarks and thus drastically reduces
energy cost by 81% on average and 98% in maximum.

5.5 Effect of PU/AU Ratio

Figure 18 shows different performance results under different PU/AU
configuration, when running pagerank on enwiki graph. If there
are only 2 to 4 PUs, the memory bandwidth is far from saturation
and thus it spends 87% more cycles compared with the optimal
case. If we replace most AUs with PUs, the system is bottlenecked
by the AU operations, i.e., writing to SPM. In this setting, total cy-
cles will increase by 93%. With poor configuration, the streamlined
processing can even get worse performance.

MICRO ’52, October 12-16, 2019, Columbus, OH, USA

1e9 pagerank_wiki

2.5

2.0

Cycles

1.0

0.5

0
P14A2 P12A4 P10A6 P8A8 P6A10 P4A12 P2A14

Figure 18: Performance w.r.t Different PU/AU Ratios
5.6 Multi-Node Performance

We evaluate a 4-node system where each machine has the same
HMC memory setting as in the single-node performance evaluation.
The inter-node, inter-cube and intra-cube bandwidth are 6GB/s,
120GB/s and 360GB/s, respectively. Each global iteration contains
four local iterations. The results are shown in Figure 19 where
speedup is normalized to GraphQ single node PIM performance.
For many test cases, multi-node Tesseract speedup is less than
1, it is because the inter-node communication becomes the new
bottleneck. Moreover, the problem of irregular communication in
Tesseract becomes worse in a low bandwidth multi-node setting
and significantly limits its scalability. Take PageRank as an example,
single-node Tesseract is 3x to 14x slower than GraphQ, while the
multi-node Tesseract can be 61x slower than GraphQ. The speedup
of GraphQ is also less in multi-node setting, but due to regular batch
communication and fast single-node design, multi-node GraphQ is
consistently better than Tesseract.

GraphQ’s hybrid execution alleviates this problem and makes
PIM-based graph processing still efficient across different machines.
In a 4-node PIM, the speedup is 2.98% compared with single-node
GraphQ, which translates into a 98.34x speedup compared with a
single node with conventional memory hierarchy of the same mem-
ory size. This is because the 4-node system has more computing
resources (more cores embedded in the cube) and memory band-
width. Specifically considering hybrid execution model, it leads to
average 39.3% (at most 2.57X) speedups than the executions without
the optimization.

5.7 Larger Graphs

We can not run larger graphs due to simulation constraints. > How-
ever, for larger graphs, load imbalance among different cubes in
the same round might lead to more inter-node synchronization and
significant increase in total time.

To evaluate the issue for larger graphs, we use the similar method-
ology to investigate estimate load imbalance as in Section 3.1. If
there is no inter-cube synchronization (no rounded execution in
GraphQ), the total time will be determined by the slowest cube,
i.e. the maximum of the sum of cube time in all rounds. If there is
the additional synchronization in GraphQ, the time spent in each
round will be determined by the slowest cube, i.e. maximum cube
time in each round, and the total time is the sum of all rounds.

3While both [45] and GraphQ also uses zsim, the number of cores simulated in our
study is much larger, so we can not run the same larger graphs.

MICRO ’52, October 12-16, 2019, Columbus, OH, USA

bfs wcc pagerank sssp
4 4 41 4
3 34 34 31
o
=}
? 2 2 2]
9 27
o
[Vp]
14 1 14 14

0 0
TTSDAZWK L) TTSDAZWK LJ TTSDAZWK LJ
B GraphQ BN GraphQ Hybrid

0
TTSDAZWK L)
EEE Tesseract

Figure 19: Multi-Node Performance

In graph processing, the execution time can be approximated by
the number of traversed edges. To get the number of edges, we
run three very large graphs (aforementioned in Table 2) in real
distributed systems [73] with 16 nodes. The results show that load
imbalance introduced by GraphQ synchronization is 33%, 27%, and
0.55% of total computation respectively. The average synchroniza-
tion overhead is even smaller than the smaller graphs we use in
Table 3.

Based on the above discussion, we believe that for larger graphs,
the benefit of regular communication is more than the additional
synchronization. Therefore, GraphQ is still better than Tesseract.

6 RELATED WORK

Tesseract [1] is the first PIM-based accelerator and is the base-
line of this paper. Ozdal et al. [49] proposed an accelerator for
asynchronous graph processing, which features efficient hardware
scheduling and dependence tracking. Both GraphQ and Tesseract
are designed for synchronous processing. GraphPIM [46] demon-
strates the performance benefits for graph applications by adding
the atomic operations to PIM. Graphicionado [22] is a high perfor-
mance customized graph accelerator, based on specialized memory
subsystem, instead of PIM. GraphP [72] proposes a graph partition-
ing method that reduces inter-cube communication, but it is based
on single node and did not enable the regular data movements. [6]
characterized the memory system performance of graph processing
workloads and proposed a physically decoupled prefetcher that
improves the performance of these workloads. Overlapping com-
munication and computation [41, 54, 65], graph partition [30, 71],
graph load balance [59], and graph load characterization [60, 61] is
studied extensively in distributed computing setting. However, it is
a new problem in PIM with multiple cubes and nodes.

7 CONCLUSION

This paper proposes GraphQ, a novel PIM-based graph processing
architecture that eliminates irregular data movements. The key idea
is to generate static and structured communication with runtime
system and architecture co-design. Using a zSim-based simulator
and five real-world graphs and four algorithms, the results show
that GraphQ achieves on average 3.3x and maximum 13.9x speedup,
81% energy saving compared to Tesseract. Comparing to GraphP,
GraphQ achieves more speedups to Tesseract. In addition, the 4-
node GraphQ achieves 98.34x speedup compared to a single node
with the same memory size using conventional memory hierarchy.

Zhuo, et al.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their help-
ful feedback. This research is supported by the National Science
Foundation grants CCF-1657333, CCF-1717754, CNS-1717984, CCF-
1750656, and CCF-1919289. It is also partially supported by the
National Key R&D Program of China under grant 2017YFB0203201
and NSF China under grant 61732002.

GraphQ: Scalable PIM-Based Graph Processing

REFERENCES

(1]

[10]

[11

[12

[13]

[14

[15]
[16]

[17

[18]

[19]

[20]

[21]

Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi.
2015. A scalable processing-in-memory accelerator for parallel graph process-
ing. In Computer Architecture (ISCA), 2015 ACM/IEEE 42nd Annual International
Symposium on. IEEE, 105-117.

Zhiyuan Ai, Mingxing Zhang, Yongwei Wu, Xuehai Qian, Kang Chen, and Weimin
Zheng. 2017. Squeezing out all the value of loaded data: An out-of-core graph pro-
cessing system with reduced disk i/o0. In 2017 USENIX Annual Technical Conference
(USENIX ATC 17). USENIX Association, Santa Clara, CA. 125-137.

Tero Aittokallio and Benno Schwikowski. 2006. Graph-based methods for
analysing networks in cell biology. Briefings in bioinformatics 7,3 (2006), 243-255.
Andrei Alexandrescu and Katrin Kirchhoff. 2007. Data-Driven Graph Construc-
tion for Semi-Supervised Graph-Based Learning in NLP.. In HLT-NAACL. 204-
211.

ARM. 2009. ARM Cortex-A5 Processor.
processors/cortex-a/cortex-a5.php.

Abanti Basak, Shuangchen Li, Xing Hu, Sang Min Oh, Xinfeng Xie, Li Zhao,
Xiaowei Jiang, and Yuan Xie. 2019. Analysis and Optimization of the Memory
Hierarchy for Graph Processing Workloads. In 2019 IEEE International Symposium
on High Performance Computer Architecture (HPCA). IEEE, 373-386.

Richard Bellman. 1958. On a routing problem. Quarterly of applied mathematics
16, 1 (1958), 87-90.

Paolo Boldi and Sebastiano Vigna. 2004. The webgraph framework I: compression
techniques. In Proceedings of the 13th international conference on World Wide Web.
ACM, 595-602.

William M Campbell, Charlie K Dagli, and Clifford] Weinstein. 2013. Social
network analysis with content and graphs. Lincoln Laboratory Journal 20, 1
(2013), 61-81.

Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. 2004. R-MAT: A
recursive model for graph mining. In Proceedings of the 2004 SIAM International
Conference on Data Mining. SIAM, 442-446.

Rong Chen, Jiaxin Shi, Yanzhe Chen, and Haibo Chen. 2015. Powerlyra: Differen-
tiated graph computation and partitioning on skewed graphs. In Proceedings of
the Tenth European Conference on Computer Systems. ACM, 1.

Hybrid Memory Cube Consortium et al. 2015. Hybrid memory cube specification
version 2.1. Technical Report.

Guohao Dai, Tianhao Huang, Yuze Chi, Jishen Zhao, Guangyu Sun, Yongpan
Liu, Yu Wang, Yuan Xie, and Huazhong Yang. 2018. Graphh: A processing-in-
memory architecture for large-scale graph processing. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (2018).

Anthony Danalis, Ki-Yong Kim, Lori Pollock, and Martin Swany. 2005. Transfor-
mations to parallel codes for communication-computation overlap. In Proceedings
of the 2005 ACM/IEEE conference on Supercomputing. IEEE Computer Society, 58.
Edsger W Dijkstra. 1959. A note on two problems in connexion with graphs.
Numerische mathematik 1, 1 (1959), 269-271.

Anton J Enright and Christos A Ouzounis. 2001. BioLayoutaATan automatic
graph layout algorithm for similarity visualization. Bioinformatics 17, 9 (2001),
853-854.

Francois Fouss, Alain Pirotte, Jean-Michel Renders, and Marco Saerens. 2007.
Random-walk computation of similarities between nodes of a graph with appli-
cation to collaborative recommendation. IEEE Transactions on knowledge and
data engineering 19, 3 (2007), 355-369.

Mingyu Gao, Grant Ayers, and Christos Kozyrakis. 2015. Practical near-data
processing for in-memory analytics frameworks. In 2015 International Conference
on Parallel Architecture and Compilation (PACT). IEEE, 113-124.

Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
2012. Powergraph: Distributed graph-parallel computation on natural graphs. In
Presented as part of the 10th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 12). 17-30.

Amit Goyal, Hal Daumé III, and Raul Guerra. 2012. Fast large-scale approximate
graph construction for nlp. In Proceedings of the 2012 Joint Conference on Empirical
Methods in Natural Language Processing and Computational Natural Language
Learning. Association for Computational Linguistics, 1069-1080.

Ziyu Guan, Jiajun Bu, Qiaozhu Mei, Chun Chen, and Can Wang. 2009. Personal-
ized tag recommendation using graph-based ranking on multi-type interrelated
objects. In Proceedings of the 32nd international ACM SIGIR conference on Research
and development in information retrieval. ACM, 540-547.

Tae Jun Ham, Lisa Wu, Narayanan Sundaram, Nadathur Satish, and Margaret
Martonosi. 2016. Graphicionado: A high-performance and energy-efficient ac-
celerator for graph analytics. In Microarchitecture (MICRO), 2016 49th Annual
IEEE/ACM International Symposium on. IEEE, 1-13.

Hybrid Memory Cube Consortium. 2015. Hybrid Memory Cube Specification 2.1.
Mark C. Jeffrey, Suvinay Subramanian, Cong Yan, Joel Emer, and Daniel Sanchez.
2015. A Scalable Architecture for Ordered Parallelism. In Proceedings of the 48th
International Symposium on Microarchitecture (MICRO-48). ACM, New York, NY,
USA, 228-241. https://doi.org/10.1145/2830772.2830777

http://www.arm.com/products/

[25

[26

[27

[29

[30

[31]

[32

[33

&
=)

[38

[39

S
=

[41

[42

[43

S
&

[45

[46

MICRO ’52, October 12-16, 2019, Columbus, OH, USA

Andrew B. Kahng, Bin Li, Li-Shiuan Peh, and Kambiz Samadi. 2012. ORION 2.0: A
Power-Area Simulator for Interconnection Networks. IEEE Trans. Very Large Scale
Integr. Syst. 20, 1 (Jan. 2012), 191-196. https://doi.org/10.1109/TVLSIL.2010.2091686
Vasiliki Kalavri, Vladimir Vlassov, and Seif Haridi. 2016. High-Level Programming
Abstractions for Distributed Graph Processing. CoRR abs/1607.02646 (2016).
http://arxiv.org/abs/1607.02646

Gwangsun Kim, John Kim, Jung Ho Ahn, and Jaeha Kim. 2013. Memory-centric
system interconnect design with hybrid memory cubes. In Proceedings of the
22nd international conference on Parallel architectures and compilation techniques.
IEEE Press, 145-156.

Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. 2010. What is
Twitter, a social network or a news media?. In Proceedings of the 19th international
conference on World wide web. ACM, 591-600.

Nicolas Le Novere, Michael Hucka, Huaiyu Mi, Stuart Moodie, Falk Schreiber, Ana-
toly Sorokin, Emek Demir, Katja Wegner, Mirit I Aladjem, Sarala M Wimalaratne,
et al. 2009. The systems biology graphical notation. Nature biotechnology 27, 8
(2009), 735-741.

Michael LeBeane, Shuang Song, Reena Panda, Jee Ho Ryoo, and Lizy K. John. 2015.
Data Partitioning Strategies for Graph Workloads on Heterogeneous Clusters.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (SC ’15). ACM, New York, NY, USA, Article 56,
12 pages. https://doi.org/10.1145/2807591.2807632

Dong Uk Lee, Kyung Whan Kim, Kwan Weon Kim, Hongjung Kim, Ju Young
Kim, Young Jun Park, Jae Hwan Kim, Dae Suk Kim, Heat Bit Park, Jin Wook Shin,
et al. 2014. 25.2 A 1.2 V 8Gb 8-channel 128GB/s high-bandwidth memory (HBM)
stacked DRAM with effective microbump I/O test methods using 29nm process
and TSV. In Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014
IEEE International. IEEE, 432-433.

Jure Leskovec, Lada A Adamic, and Bernardo A Huberman. 2007. The dynamics
of viral marketing. ACM Transactions on the Web (TWEB) 1, 1 (2007), 5.

Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. 2010. Signed Networks
in Social Media. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’10). ACM, New York, NY, USA, 1361-1370. https:
//doi.org/10.1145/1753326.1753532

Jure Leskovec and Andrej Krevl. 2014. friendster.
data/com-Friendsterhtml

Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network
Dataset Collection. http://snap.stanford.edu/data.

Jure Leskovec, Kevin J Lang, Anirban Dasgupta, and Michael W Mahoney. 2009.
Community structure in large networks: Natural cluster sizes and the absence of
large well-defined clusters. Internet Mathematics 6, 1 (2009), 29-123.

Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M. Tullsen,
and Norman P. Jouppi. 2009. McPAT: An Integrated Power, Area, and Timing
Modeling Framework for Multicore and Manycore Architectures. In MICRO 42:
Proceedings of the 42nd Annual IEEE/ACM International Symposium on Microar-
chitecture. 469-480.

Shuchuan Lo and Chingching Lin. 2006. WMR-A Graph-Based Algorithm for
Friend Recommendation. In Proceedings of the 2006 IEEE/WIC/ACM International
Conference on Web Intelligence. IEEE Computer Society, 121-128.

Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo Kyrola,
and Joseph M Hellerstein. 2012. Distributed GraphLab: a framework for machine
learning and data mining in the cloud. Proceedings of the VLDB Endowment 5, 8
(2012), 716-727.

Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: a system for large-
scale graph processing. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data. ACM, 135-146.

Vladimir Marjanovi¢, Jesus Labarta, Eduard Ayguadé, and Mateo Valero. 2010.
Overlapping Communication and Computation by Using a Hybrid MPI/SMPSs
Approach. In Proceedings of the 24th ACM International Conference on Super-
computing (ICS °10). ACM, New York, NY, USA, 5-16. https://doi.org/10.1145/
1810085.1810091

Julian McAuley and Jure Leskovec. 2012. Learning to Discover Social Circles
in Ego Networks. In Proceedings of the 25th International Conference on Neural
Information Processing Systems (NIPS’12). Curran Associates Inc., USA, 539-547.
http://dl.acm.org/citation.cfm?id=2999134.2999195

Robert Ryan McCune, Tim Weninger, and Greg Madey. 2015. Thinking like a
vertex: a survey of vertex-centric frameworks for large-scale distributed graph
processing. ACM Computing Surveys (CSUR) 48, 2 (2015), 25.

Batul J Mirza, Benjamin J Keller, and Naren Ramakrishnan. 2003. Studying
recommendation algorithms by graph analysis. Journal of Intelligent Information
Systems 20, 2 (2003), 131-160.

Anurag Mukkara, Nathan Beckmann, Maleen Abeydeera, Xiaosong Ma, and
Daniel Sanchez. 2018. Exploiting Locality in Graph Analytics through Hardware-
Accelerated Traversal Scheduling. In Proceedings of the 51st annual IEEE/ACM
international symposium on Microarchitecture (MICRO-51).

Lifeng Nai, Ramyad Hadidi, Jaewoong Sim, Hyojong Kim, Pranith Kumar, and
Hyesoon Kim. 2017. GraphPIM: Enabling Instruction-Level PIM Offloading

https://snap.stanford.edu/

http://www.arm.com/products/processors/cortex-a/cortex-a5.php
http://www.arm.com/products/processors/cortex-a/cortex-a5.php
https://doi.org/10.1145/2830772.2830777
https://doi.org/10.1109/TVLSI.2010.2091686
http://arxiv.org/abs/1607.02646
https://doi.org/10.1145/2807591.2807632
https://doi.org/10.1145/1753326.1753532
https://doi.org/10.1145/1753326.1753532
https://snap.stanford.edu/data/com-Friendster.html
https://snap.stanford.edu/data/com-Friendster.html
http://snap.stanford.edu/data
https://doi.org/10.1145/1810085.1810091
https://doi.org/10.1145/1810085.1810091
http://dl.acm.org/citation.cfm?id=2999134.2999195

MICRO ’52, October 12-16, 2019, Columbus, OH, USA

[47]

[48]

[49]

o
=

[51

[52

[53]

[54]

[55

[56]

[57]

[58]

[59]

[60]

(61

[62]

[63

[64]

[65

[66]

[67

N
&

[69]

in Graph Computing Frameworks. In High Performance Computer Architecture
(HPCA), 2017 IEEE International Symposium on. IEEE, 457-468.

Jacob Nelson, Brandon Holt, Brandon Myers, Preston Briggs, Luis Ceze, Simon
Kahan, and Mark Oskin. 2014. Grappa: A latency-tolerant runtime for large-scale
irregular applications. In International Workshop on Rack-Scale Computing (WRSC
w/EuroSys).

NIST (National Institute of Standards and Technology). 2000. Matrix Market.
https://math.nist.gov/MatrixMarket/index.html.

Muhammet Mustafa Ozdal, Serif Yesil, Taemin Kim, Andrey Ayupov, John Greth,
Steven Burns, and Ozcan Ozturk. 2016. Energy efficient architecture for graph
analytics accelerators. In Computer Architecture (ISCA), 2016 ACM/IEEE 43rd
Annual International Symposium on. IEEE, 166-177.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The
PageRank citation ranking: bringing order to the web. (1999).

Keshav Pingali, Donald Nguyen, Milind Kulkarni, Martin Burtscher, M Amber
Hassaan, Rashid Kaleem, Tsung-Hsien Lee, Andrew Lenharth, Roman Manevich,
Mario Méndez-Lojo, et al. 2011. The tao of parallelism in algorithms. In ACM
Sigplan Notices, Vol. 46. ACM, 12-25.

Meikang Qiu, Lei Zhang, Zhong Ming, Zhi Chen, Xiao Qin, and Laurence T Yang.
2013. Security-aware optimization for ubiquitous computing systems with SEAT
graph approach. J. Comput. System Sci. 79, 5 (2013), 518-529.

Daniel Sanchez and Christos Kozyrakis. 2013. ZSim: Fast and Accurate Mi-
croarchitectural Simulation of Thousand-core Systems. In Proceedings of the 40th
Annual International Symposium on Computer Architecture (ISCA ’13). ACM, New
York, NY, USA, 475-486. https://doi.org/10.1145/2485922.2485963

José Carlos Sancho, Kevin J Barker, Darren J Kerbyson, and Kei Davis. 2006.
Quantifying the potential benefit of overlapping communication and computation
in large-scale scientific applications. In |. IEEE, 17.

Satu Elisa Schaeffer. 2007. Survey: Graph Clustering. Comput. Sci. Rev. 1, 1 (Aug.
2007), 27-64. https://doi.org/10.1016/j.cosrev.2007.05.001

Manjunath Shevgoor, Jung-Sik Kim, Niladrish Chatterjee, Rajeev Balasubramo-
nian, Al Davis, and Aniruddha N Udipi. 2013. Quantifying the relationship
between the power delivery network and architectural policies in a 3D-stacked
memory device. In Proceedings of the 46th Annual IEEE/ACM International Sym-
posium on Microarchitecture. ACM, 198-209.

Julian Shun and Guy E Blelloch. 2013. Ligra: a lightweight graph processing
framework for shared memory. In ACM SIGPLAN Notices, Vol. 48. ACM, 135-146.
Julian Shun, Farbod Roosta-Khorasani, Kimon Fountoulakis, and Michael W.
Mahoney. 2016. Parallel Local Graph Clustering. Proc. VLDB Endow. 9, 12 (Aug.
2016), 1041-1052. https://doi.org/10.14778/2994509.2994522

S. Song, M. Li, X. Zheng, M. LeBeane, J. H. Ryoo, R. Panda, A. Gerstlauer, and
L. K. John. 2016. Proxy-Guided Load Balancing of Graph Processing Workloads
on Heterogeneous Clusters. In 2016 45th International Conference on Parallel
Processing (ICPP). 77-86. https://doi.org/10.1109/ICPP.2016.16

Shuang Song, Xu Liu, Qinzhe Wu, Andreas Gerstlauer, Tao Li, and Lizy K. John.
2018. Start Late or Finish Early: A Distributed Graph Processing System with
Redundancy Reduction. Proc. VLDB Endow. 12, 2 (Oct. 2018), 154-168. https:
//doi.org/10.14778/3282495.3282501

S.Song, X. Zheng, A. Gerstlauer, and L. K. John. 2016. Fine-grained power analysis
of emerging graph processing workloads for cloud operations management. In
2016 IEEE International Conference on Big Data (Big Data). 2121-2126. https:
//doi.org/10.1109/BigData.2016.7840840

AM Stankovic and MS Calovic. 1989. Graph oriented algorithm for the steady-
state security enhancement in distribution networks. IEEE Transactions on Power
Delivery 4, 1 (1989), 539-544.

Lei Tang and Huan Liu. 2010. Graph mining applications to social network
analysis. In Managing and Mining Graph Data. Springer, 487-513.

Po-An Tsai, Nathan Beckmann, and Daniel Sanchez. 2017. Jenga: Sotware-Defined
Cache Hierarchies. In Proceedings of the 44th Annual International Symposium on
Computer Architecture. ACM, 652-665.

Ta Quoc Viet and Tsutomu Yoshinaga. 2006. Improving linpack performance
on SMP clusters with asynchronous MPI programming. IPS7 Digital Courier 2
(2006), 598-606.

Keval Vora, Sai Charan Koduru, and Rajiv Gupta. 2014. ASPIRE: exploiting
asynchronous parallelism in iterative algorithms using a relaxed consistency
based DSM. In ACM SIGPLAN Notices, Vol. 49. ACM, 861-878.

Tianyi Wang, Yang Chen, Zengbin Zhang, Tianyin Xu, Long Jin, Pan Hui, Beixing
Deng, and Xing Li. 2011. Understanding graph sampling algorithms for social
network analysis. In 2011 31st International Conference on Distributed Computing
Systems Workshops. IEEE, 123-128.

Yong-Jie Wang, Ming Xian, Jin Liu, and Guo-yu Wang. 2007. Study of network
security evaluation based on attack graph model. JOURNAL-CHINA INSTITUTE
OF COMMUNICATIONS 28, 3 (2007), 29.

Wencong Xiao, Jilong Xue, Youshan Miao, Zhen Li, Cheng Chen, Ming Wu, Wei
Li, and Lidong Zhou. 2017. Tux?: Distributed Graph Computation for Machine
Learning. In The 14th USENIX Symposium on Networked Systems Design and
Implementation.

[70

[71

[72

[74

Zhuo, et al.

Torsten Zesch and Iryna Gurevych. 2007. Analysis of the Wikipedia category
graph for NLP applications. In Proceedings of the TextGraphs-2 Workshop (NAACL-
HLT 2007). 1-8.

Mingxing Zhang, Yongwei Wu, Kang Chen, Xuehai Qian, Xue Li, and Weimin
Zheng. 2016. Exploring the Hidden Dimension in Graph Processing. In The 12th
USENIX Symposium on Operating Systems Design and Implementation.
Mingxing Zhang, Youwei Zhuo, Chao Wang, Mingyu Gao, Yongwei Wu, Kang
Chen, Christos Kozyrakis, and Xuehai Qian. 2018. GraphP: Reducing Commu-
nication for PIM-Based Graph Processing with Efficient Data Partition. In High
Performance Computer Architecture (HPCA), 2018 IEEE International Symposium
on. IEEE, 544-557.

Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma. 2016. Gemini:
A Computation-Centric Distributed Graph Processing System.. In OSDI. 301-316.
Xiaowei Zhu, Wentao Han, and Wenguang Chen. 2015. GridGraph: Large-scale
graph processing on a single machine using 2-level hierarchical partitioning. In
2015 USENIX Annual Technical Conference (USENIX ATC 15). 375-386.

https://math.nist.gov/MatrixMarket/index.html
https://doi.org/10.1145/2485922.2485963
https://doi.org/10.1016/j.cosrev.2007.05.001
https://doi.org/10.14778/2994509.2994522
https://doi.org/10.1109/ICPP.2016.16
https://doi.org/10.14778/3282495.3282501
https://doi.org/10.14778/3282495.3282501
https://doi.org/10.1109/BigData.2016.7840840
https://doi.org/10.1109/BigData.2016.7840840

	Abstract
	1 Introduction
	2 Background and Motivations
	2.1 Basics of Graph Processing
	2.2 Processing-In-Memory
	2.3 PIM-Based Graph Processing
	2.4 Lessons Learned and Design Principles

	3 GraphQ Architecture
	3.1 Predictable Inter-Cube Communication
	3.2 Decoupled Intra-Cube Data Movements
	3.3 Tolerating Inter-Node Latency
	3.4 Novelty and Discussion

	4 GraphQ Implementation
	4.1 Architectural Primitives
	4.2 Parameter Consideration
	4.3 GraphQ Runtime System

	5 Evaluation
	5.1 Evaluation Methodology
	5.2 Comparing with Tesseract
	5.3 Comparing with GraphP
	5.4 Energy Consumption
	5.5 Effect of PU/AU Ratio
	5.6 Multi-Node Performance
	5.7 Larger Graphs

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

