SympleGraph: Distributed Graph Processing with
Precise Loop-Carried Dependency Guarantee

Youwei Zhuo* Jingji Chen” Qinyi Luo
University of Southern California University of Southern California University of Southern California
USA USA USA

youweizh@usc.edu

jingjich@usc.edu

ginyiluo@usc.edu

Yanzhi Wang Hailong Yang Depei Qian
Northeastern University Beihang University Beihang University
USA China China

yanz.wang@husky.neu.edu

hailong.yang@buaa.edu.cn

depeig@buaa.edu.cn

Xuehai Qian

University of Southern California

USA

xuehai.qian@usc.edu

Abstract

Graph analytics is an important way to understand rela-
tionships in real-world applications. At the age of big data,
graphs have grown to billions of edges. This motivates dis-
tributed graph processing. Graph processing frameworks
ask programmers to specify graph computations in user-
defined functions (UDFs) of graph-oriented programming
model. Due to the nature of distributed execution, current
frameworks cannot precisely enforce the semantics of UDFs,
leading to unnecessary computation and communication. In
essence, there exists a gap between programming model and
runtime execution.

This paper proposes SympleGraph, a novel distributed
graph processing framework that precisely enforces loop-
carried dependency, i.e., when a condition is satisfied by
a neighbor, all following neighbors can be skipped. Sym-
pleGraph instruments the UDFs to express the loop-carried
dependency, then the distributed execution framework en-
forces the precise semantics by performing dependency prop-
agation dynamically. Enforcing loop-carried dependency re-
quires the sequential processing of the neighbors of each
vertex distributed in different nodes. Therefore, the major

“Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

PLDI °20, June 15-20, 2020, London, UK

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7613-6/20/06...$15.00
https://doi.org/10.1145/3385412.33859611

592

challenge is to enable sufficient parallelism to achieve high
performance. We propose to use circulant scheduling in the
framework to allow different machines to process disjoint
sets of edges/vertices in parallel while satisfying the sequen-
tial requirement. It achieves a good trade-off between precise
semantics and parallelism. The significant speedups in most
graphs and algorithms indicate that the benefits of elimi-
nating unnecessary computation and communication over-
shadow the reduced parallelism. Communication efficiency
is further optimized by 1) selectively propagating depen-
dency for large-degree vertices to increase net benefits; 2)
double buffering to hide communication latency. In a 16-
node cluster, SympleGraph outperforms the state-of-the-art
system Gemini and D-Galois on average by 1.42Xx and 3.30X,
and up to 2.30X and 7.76X, respectively. The communication
reduction compared to Gemini is 40.95% on average and up
to 67.48%.

CCS Concepts: - Computing methodologies —
Distributed programming languages.

Keywords: graph analytics, graph algorithms, compilers, big
data

ACM Reference Format:

Youwei Zhuo, Jingji Chen, Qinyi Luo, Yanzhi Wang, Hailong Yang,
Depei Qian, and Xuehai Qian. 2020. SympleGraph: Distributed
Graph Processing with Precise Loop-Carried Dependency Guaran-
tee. In Proceedings of the 41st ACM SIGPLAN International Conference
on Programming Language Design and Implementation (PLDI "20),
FJune 15-20, 2020, London, UK. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3385412.338596 1

1 Introduction

Graphs capture relationships between entities. Graph ana-
lytics has emerged as an important way to understand the


https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3385412.3385961
https://doi.org/10.1145/3385412.3385961

PLDI 20, June 15-20, 2020, London, UK

relationships between heterogeneous types of data, allowing
data analysts to draw valuable insights from the patterns for
a wide range of real-world applications, including machine
learning tasks [57], natural language processing [2, 20, 59],
anomaly detection [43, 50], clustering [46, 49], recommen-
dation [16, 23, 37], social influence analysis [12, 51, 55], and
bioinformatics [1, 14, 29].

At the age of big data, graphs have grown to billions of
edges and will not fit into the memory of a single machine.
Even if they can, the performance will be limited by the num-
ber of cores. Single-machine processing is not a truly scalable
solution. To process large-scale graphs efficiently, a number
of distributed graph processing frameworks have been pro-
posed, e.g., Pregel [32], GraphLab [31], PowerGraph [18] ,
D-Galois [13], and Gemini [61]. These frameworks partition
the graph to distributed memory, so the neighbors of a vertex
are assigned to different machines. To hide the details and
complexity of distributed data partition and computation,
these frameworks abstract computation as vertex-centric
User-Defined Functions (UDFs) P(v), which is executed for
each vertex v. In each P(v), programmers can access the
neighbors of v as if they are local.

The framework is responsible for distributing the func-
tion to different machines, scheduling the computations and
communication, performing synchronization, and ensure
that the distribute execution output the correct results. To
achieve good performance, both communication and com-
putation need to be efficient. The communication problem,
which is closely related to graph partition and replication, has
been traditionally a key consideration of distributed frame-
work. Prior works have proposed 1D [31, 32], 2D [18, 61],
3D [60] partition, and investigate the design space exten-
sively [13]. This paper makes the first attempt to improve
the efficiency of the two factors at the same time by reducing
redundant computation and communication, leveraging the
dependency in UDFs.

Loop-carried dependency is a common code pattern used
in UDFs: when traversing the neighbors of a vertex in a
loop, a UDF decides whether to break or continue, based

1 def bfs(Array[Vertex] nbr) { 1 def signal(Vertex v, Array[Vertex] nbr)
2 for v in V {
3 for u in nbr { 2 for u in nbrs {
4 if (not visited[v] & 3 if (frontierful) {
5 frontier[ul) { 4 emit(v, u);
6 parent[v] = u; 5 break;
7 visited[v] = true; 6 >
8 frontierlvl = true; 7} /7 end for u
9 break; 8 3 // end signal
10 } 9 def slot(Vertex v, Vertex upt) {
11 } // end for u 10 if (not visited[vl) {
12 } // end for v 11 parent[v] = upt;
13 3 // end bottom_up_bfs 12 visited[v] = true;
13 frontier[v] = true;
14

15 3 // end slot

(a) Bottom-up BFS (b) Bottom-up BFS in Gemini

Figure 1. Bottom-up BFS Algorithm

593

Youwei Zhuo, Jingji Chen, Qinyi Luo, Yanzhi Wang, Hailong Yang, Depei Qian, Xuehai Qian

e

Yo Machine 1 - Machine 2
L PN
N ' )
) ...
- ’ ;
master mirror
>
Machine 3|  signal  slot communication

Figure 2. Bottom-up BFS Execution

on the state of processing previous neighbors. Specifically,
consider two neighbors u; and u; of vertex v. If u; satisfies
an algorithm-specific condition, u, will not be processed due
to the dependency. The pattern appears in several impor-
tant algorithms. Consider the bottom-up breadth-first search
(BFS) [4] with pseudocode in Figure 1a. In each iteration,
the algorithm visits the neighbors of “unvisited” vertices. If
any of the neighbors of the current unvisited vertex is in
the “frontier”, it will no longer traverse other neighbors and
mark the vertex as “visited”.

In distributed frameworks [11, 13, 17, 18, 25, 27, 32, 45, 56,
61], programmers can write a control flow with the break
statement) in UDF to indicate the control dependency. Fig-
ure 1b (b) shows signal-slot implementation of bottom-up
BFS in Gemini [61]. The signal and slot UDF specify the
computation to process each neighbor of a vertex and vertex
update, respectively. We see that the bottom-up BFS UDF has
control dependency. The signal function iterates the neigh-
bors of vertex v, and breaks out of the loop when it finds the
neighbor in the frontier (Line 5). This control dependency
expresses the semantics of skipping the following edges and
avoids unnecessary edge traversals. However, if u; and u; are
distributed in different machines, u; and u, can be processed
in parallel and u; does not know the state after processing
;. Therefore, the loop-carried dependency specified in UDF
is not precisely enforced in the execution, thereby only an
“illusion”.

The consequence of such imprecise execution behavior is
unnecessary computation and communication. As shown in
Figure 2, vertex 9 has eight neighbors, two of them (vertex
7 and 8) are allocated in machine 3, the same as the mas-
ter copy of vertex 9. The others are allocated in machine
1 and 2. More background details on graph partition will
be discussed in Section 2.2. To perform the signal UDF in
remote machines, mirrors of vertex 9 are created. Update
communication is incurred when mirrors (machine 1 and 2)
transfer partial results of signal to the master of vertex 9
(machine 3). Unnecessary computation is incurred when a
mirror performs computations on vertex 9’s neighbors while
the condition has already been satisfied. Unnecessary update



SympleGraph: Distributed Graph Processing with Precise ...

communication is incurred when the mirror sends partial
results to the master.

To address this problem, we propose SympleGraph !, a
novel framework for distributed graph processing that en-
forces the loop-carried dependency in UDF.SympleGraph
analyzes the UDFs of unmodified codes, identifies, and in-
struments UDF to express the loop-carried dependency. The
distributed framework enforces the dependency semantics
by performing dynamic dependency propagation. Specifi-
cally, a new type of dependency communication propagates
dependency among mirrors and back to master. Existing
frameworks only support update communication, which ag-
gregates updates from mirrors to master.

Enforcing loop-carried dependency requires that all neigh-
bors of a vertex are processed sequentially. To enable suffi-
cient parallelism while satisfying the sequential requirement,
we propose circulant scheduling and divide the execution of
each iteration into steps, during which different machines
process disjoint sets of edges and vertices. If one machine
determines that the execution should break in a step, the
break information is passed to the following machines so
that the remaining neighbors are not processed. In practice,
the computation and update communication of each step can
be largely overlapped (see details in Section 5.3); thus the
fine-grained steps do not introduce much extra overhead.

SympleGraph not only eliminates unnecessary computa-
tion but potentially reduces the total amount of communica-
tion. On the one side, small dependency messages are orga-
nized as a bit map (one bit per vertex) circulating around all
mirrors and master, do not exist in current frameworks and
thus incur extra communication. On the other side, precisely
enforcing loop-carried dependency can eliminate unneces-
sary computation and communication. Our results show
that the total amount of communication is indeed reduced
in most cases (Section 7.3, Table 6). To further reduce de-
pendency communication, SympleGraph differentiates de-
pendency communication for high-degree and low-degree
vertices, and only performs dependency propagation for
high-degree vertices. We apply double buffering to enable
computation and dependency communication overlapping
and alleviate load imbalance.

To evaluate SympleGraph, we conduct the experiments
on three clusters using five algorithms and four real-world
datasets and three synthesized scale-free graphs with R-MAT
generator [10]. We compare SympleGraph with two state-of-
the-art distributed graph processing systems, Gemini [61]
and D-Galois [13]. The results show that SympleGraph sig-
nificantly advances the state-of-the-art, outperforming Gem-
ini and D-Galois on average by 1.42X and 3.30%, and up to

1The name SympleGraph does not imply symbolic execution. Instead, it
refers to the key insight of scheduling the symbol execution order and
making all evaluation concrete.

594

PLDI 20, June 15-20, 2020, London, UK

2.30% and 7.76X, respectively. The communication reduction
compared to Gemini is 40.95% on average, and up to 67.48%.

2 Background and Problem Formalization
2.1 Graph and Graph Algorithm

Graph. A graph G is defined as (V, E) where V is the set of
vertices, and E is the set of edges (u, v) (u and v belong to
V). The neighbors of a vertex v are vertices that each has an
edge connected to v. The degree of a vertex is the number
of neighbors. In the following, we explain five important
iterative graph algorithms whose implementations based
on vertex functions will incur loop-carried dependency in
UDF. Figure 3 shows the pseudocode of one iteration of each
algorithm in sequential implementation.

Breadth-First Search (BFS). BFS is an iterative graph tra-
versal algorithm that finds the shortest path in an unweighted
graph. The conventional BFS algorithm follows the top-down
approach: BFS first visits a root vertex, then in each iteration,
the newly “visited” vertices become the “frontier” and BFS
visits all the neighbors of the “frontier”.

Bottom-up BFS [4] changes the direction of traversal. In
each iteration, it visits the neighbors of “unvisited” vertices,
if one of them is in the “frontier”, the traversal of other
neighbors will be skipped, and the current vertex is added
to the frontier and marked as “visited”. Compared to the
top-down approach, bottom-up BFS avoids the inefficiency
due to multiple visits of one new vertex in the frontier amd
significantly reduces the number of edges traversed.
Maximal Independent Set (MIS). An independent set is
a set of vertices in a graph, in which any two vertices are
non-adjacent. A Maximal Independent Set (MIS) is an inde-
pendent set that is not a subset of any other independent set.
A heuristic MIS algorithm (Figure 3 (a)) is based on graph
coloring. First, each vertex is assigned distinct values (colors)
and marked as active. In each iteration, we find a new MIS
composed of active vertices with the smallest color value
among their active neighbors’ colors. The new MIS vertices
will be removed from further execution (marked as inactive).
K-core. A K-core of a graph G is a maximal subgraph of G
in which all vertices have a degree at least k. The standard
K-core algorithm [47] (Figure 3 (b)) * removes the vertices
that have a degree less than K. Since removing vertices will
decrease the degree of its neighbors, the operation is per-
formed iteratively until no more removal is needed. When
counting the number of neighbors for each vertex, if the
count reaches K, we can exit the loop and mark this vertex
as “no remove”.

K-means. K-means is a popular clustering algorithm in data
mining. Graph-based K-means [45] is one of its variants
where the distance between two vertices is defined as the

“There are other K-core algorithms with linear time complexity [34]. We
choose this algorithm to demonstrate the basic code pattern. We also com-
pare with the algorithm in evaluation.



PLDI 20, June 15-20, 2020, London, UK

1 def mis(Array[Vertex] nbr) { 1 def kcore (Array[Vertex] nbr) { 1
2 for vin vV { 2 for vinvV{ 2
3 flag = true; 3 cnt = 0; 3
4 for u in nbr { 4 for u in nbr { 4
5 if (activelul 8&& 5 if (activelul) { 5
6 colorful < color[vl) { 6 ent += 1; 6
7 flag = false; 7 if (ent >= k) { 7
8 break; 8 break; 8
9 3 9 } 9
10 if (flag) 10 } 10
11 is_mis[v] = true; 11 } // end for u

12 } // end for u 12y // end for v

13 } // end for v 13 3 // end kcore

14 3 // end nis

(a) MIS (b) K-core

def
/7
fo

3}

11 3 /7 end kmeans

Youwei Zhuo, Jingji Chen, Qinyi Luo, Yanzhi Wang, Hailong Yang, Depei Qian, Xuehai Qian

1 def sample(Vertex v, Array[Vertex] nbr
) {

kmeans (Array[Vertex] nbr) {
generate C random centers

rvinVv{ 2 // generate C random number
for u in nbr { 3 r=randO
if (assigned_to_cluster[ul) { 4 // set prefix-sum
cluster[v] = cluster[ul; 5  weight = o
break; 6 for u in nbr {
3 7 weight += weight[ul
} // end for u 8 if (weight >= r) {
// end for v 9 select[u] = true;
10 break;
11 }
12 } // end for u
13 3} // end kmeans

(c) K-means (d) Graph Sampling

Figure 3. Examples of algorithms with loop-carried dependency

length of the shortest path between them (assuming that
the length of every edge is one). The algorithm shown in
Figure 3 (c) consists of four steps: (1) Randomly generate a
set of cluster centers; (2) Assign every vertex to the nearest
cluster center; (3) Calculate the sum of distance from every
vertex to its belonging cluster center; (4) If the clustering
is good enough or the number of iterations exceed some
pre-specified threshold, terminate the algorithm, else, goto
(1) and repeat the algorithm.

Graph Sampling. Graph sampling is an algorithm that
picks a subset of vertices or edges of the original graph.
We show an example of neighbor vertex sampling in Fig-
ure 3 (d), which is the core component of graph machine
learning algorithms, such as DeepWalk [41], node2vec [22],
and Graph Convolutional Networks [3]. In order to sample
from the neighbor of the vertex based on weights, we need
to generate a uniform random number and find its position
in the prefix-sum array of the weights, i.e., the index in the
array that the first prefix-sum element is larger than or equal
to our random number. *

2.2 Distributed Graph Processing Frameworks

There are two design aspects of distributed graph framework:
programming abstraction, and graph partition/replication.
Programming abstraction deals with how to express algo-
rithms with a vertex function. Graph partition determines
how vertices and edges are distributed, replicated, and syn-
chronized in different machines.

Master-mirror. To describe vertex replications, current frame-

works [11, 13, 18, 61] adopt the master-mirror notion: each
vertex is owned by one machine, which keeps the master
copy, its replications on other machines are mirrors.

The distribution of masters and mirrors is determined by
graph partition. There are three types of graph partition
techniques based on the definition in [13]. Incoming edge-
cut: Incoming edges of one vertex are assigned only to one
machine, while its outgoing edges may be partitioned; Out-
going edge-cut: Outgoing edges of each vertex are assigned

3There are other sampling algorithms, such as the alias method. It builds
alias table step to exhibit a similar pattern that searches prefix-sum array.
We choose this algorithm since it reflects our basic code pattern.

595

1 // mirror signal

2 for m in machines {

3 for mirror in m.mirrors(v) {
4 signal(v, nbrs(v));

5 }

6 3}

7 // master slot

8 for (v, update) in signals {

9 slot(v, update);

10 3

Figure 4. Signal-Slot in pull mode

only to one machine, while its incoming edges are parti-
tioned. It is used in several systems, including Pregel [32],
GraphLab [31], Gemini [61]. Vertex-cut: Both the outgoing
and incoming edges of a vertex can be assigned to different
machines. It is used in PowerGraph [18] and GraphX [19].
Recent work [60] also proposed 3D graph partition that di-
vides the vector data of vertices into layers. This dimension is
orthogonal to the edge and vertex dimensions considered in
other partitioning methods. We build SympleGraph based
on Gemini, the state-of-the-art distributed graph processing
framework using outgoing edge-cut partition. However, our
ideas also apply to vertex-cut and other distributed frame-
works. It is not applicable to incoming edge-cut, which will
be discussed in Section 2.3.

In outgoing edge-cut, a mirror vertex is generated if its
incoming edges are partitioned among multiple machines.
Figure 2 shows an example of a graph distributed in three
machines. Circles with solid lines are masters, and circles
with dashed lines are mirrors. Here, vertex 9 has 8 incoming
edges, i.e., sources vertex 1 to 8. Machine 1 contains the
master of vertex 1 to 3, and machine 2 contains the master of
vertex 4 to 6. The master of vertex 9 resides on machine 3 but
its incoming edges are partitioned across all three machines,
so mirrors of v are created on machine 1 and 2.
Signal-slot. Ligra [48] discusses the two modes of signal-
slot: push and pull. Push mode traverses and updates the
outgoing neighbors of vertices, while pull mode traverses
the incoming neighbors. The five graph algorithms discussed
earlier are more efficient in pull mode in most iterations, and
SympleGraph optimization focuses on pull mode. Figure 4
shows the pseudocode of pull mode. The signal function is
first executed on mirrors in parallel. The mirrors then send



SympleGraph: Distributed Graph Processing with Precise ...

update messages to the master machine. On receiving an
update message, the master machine applies the slot function
to aggregate the update, and then eventually updates master
vertex after receiving all updates. Figure 2 also illustrated
how the signal-slot function is applied for vertex 9. The
blue edges (in machine 1 and 2) refer to signals, and the
yellow edges (in machine 3) refer to slots. Green edges across
machines indicate communication.

We can formalize the signal-slot abstraction by borrowing
the notions of distributed functions in [58].

Definition 2.1. We use u to denote a sequence of neighbors
of vertex v, and use u; ® u, to denote the concatenation of u;
and u,. A function H is associative-decomposable if there exist
two functions I and C satisfying the following conditions:

1. H is the composition of I and C: Yu, H(u) = C(I(u));

2. C is commutative: Yuy, uy, C(u; ® u) = C(uz ® uy);

3. Cisassociative: Vuy, uy, us, C(C(uy®u;)®us3) = C(u; ®
Cluz @ uy)).

Generally, all graph algorithms can be represented by
associative-decomposable vertex functions in Definition 2.1.
Intuitively, I and C correspond to signal and slot functions.
Note that the abstraction specification is also a system imple-
mentation specification. If C is commutative and associative,
a system can can perform C efficiently: the execution can be
out-of-order with partial aggregation.

However, this essentially means that existing distributed
systems require the graph algorithms to satisfy a stronger
condition.

Definition 2.2. A function H is parallelized associative-
decomposable if there exist two functions I and C satisfying
the conditions of Definition 2.1, and I preserves concatena-
tion in H:

Yuy, uz, H(uy ® up) = C(I(uy @ uz)) = C(I(uy) @ I(uz)).

Gemini and other existing frameworks require the graph
algorithms to satisfy Definition 2.2, which offers parallelism
and ensures correctness. One the one hand, Gemini can dis-
tribute the execution of neighbors to different machines, and
perform I independently and in parallel. One the other hand,
the output of H is the same as if executing I sequentially.

2.3 Inefliciencies with Existing Frameworks

Existing frameworks are designed for algorithms without
loop-carried dependency. We first define loop-carried depen-
dency and dependent execution. After that, we can rewrite
Definition 2.1 as Definition 2.4.

Definition 2.3. We use I(uz|u;) to denote I(uz) given the
state that I(u;) has finished, such that Yuy, us, I(u; ® uy) =
I(u1) ®I(uz|uq). A function I has no loop-carried dependency
if Yuy, uz, I(uz|uy) = I(us).

596

PLDI 20, June 15-20, 2020, London, UK

Definition 2.4. A function H is associative-decomposable
if there exist two functions I and C satisfying the conditions
of Definition 2.1. H has the property:

Vuy, ug, H(ug © up) = C(I(ug ® up)) = CI(u1) @ I(uz|uy)).

By Definition 2.3, these algorithms always satisfy both
Definition 2.4 and Definition 2.2. Otherwise, if a graph al-
gorithm only satisfies Definition 2.4, but not Definition 2.2,
existing frameworks will not output the correct results. For-
tunately, many graph algorithms with loop-carried depen-
dency (including the five algorithms in this paper) satisfy
Definition 2.2, so correctness is not an issue for existing
frameworks.

However, the intermediate output of I can be different.
By Definition 2.2, we will execute I(u;) and I(u,). By Defini-
tion 2.4, if we enforce dependency, we will execute I(u;) and
I(uz|uy). The difference comes down to I(us) and I(uy|uy). If
we use cost(-) to denote the computation cost of a function
or the communication amount for the output of a function,
a function I has redundancy without enforcing dependency if
Yuy, uy, cost(I(uz)) > cost(I(uz|uy))) and Juy, us, cost(I(uy)) >
cost(I(uz|uy)).

We can define functions with break semantics:

Fuy, uz, (uz|uy) = 1(2) = 2.

The computation cost for I(@) is 0, and the communication
cost for @ is 0. It is evident that these functions suffer from
the redundancy problem. We can use bottom-up BFS and Fig-
ure 2 as an example to calculate the cost. The computation
cost is the number of edges traversed and the communi-
cation cost is the update message to the master. For now,
we ignore the overhead of enforcing dependency. The cir-
cles with colors are incoming neighbors that will trigger
the break branch. On machine 1, the signal function breaks
traversing after vertex 1, so vertex 2 and vertex 3 are skipped.
On machine 2, it iterates all 3 vertices if machine 2 is not
aware of the dependency in machine 1. The computation
cost is 4 edges traversed (the sum of machine 1 and machine
2), and the communication is 2 messages (1 message from
each machine). However, if we enforce the dependency;, all
vertices in machine 2 should not have been processed. The
computation cost is 1 edge traversed (only on machine 1)
and the communication is 1 message (only from machine 1).

In summary, a graph algorithm with loop-carried depen-
dency can be correct in existing frameworks, if it satisfies
Definition 2.2. However, it can be inefficient with both redun-
dant computation, and communication when loop-carried
dependency is not faithfully enforced in a distributed envi-
ronment.

Applicability The problem exists for all graph partitions
except the incoming edge-cut, i.e., all of the incoming edges
of one vertex are on the same machine, and the execution of
UDFs is not distributed to remote machines. To our knowl-
edge, none of distributed systems [11, 13, 17, 18, 25, 27, 32, 45,



PLDI 20, June 15-20, 2020, London, UK

56, 61] precisely enforce loop-carried dependency semantics.
While the incoming edge-cut is an exception, the partition
is inefficient and rarely used due to load imbalance issues.
According to D-Galois (Gluon), they used the vertex-cut par-
tition by default “since it performs well at scale” [13].

The problem exists for many algorithms with loop-carried
dependency. For the other four graph algorithms discussed in
Section 2.1: MIS has control dependency. If one vertex already
finds itself not the smallest one, it will not be marked as a
new MIS in this iteration and thus break out of the neighbor
traversal. K-core has data and control dependency. If the
vertex has more than K neighbors, it will not be marked as
removed in this iteration, and further computation can be
skipped. K-means has control dependency: when one of the
neighbors is assigned to the nearest cluster center, the vertex
can be assigned with the same center. Graph sampling has
data and control dependency. The sample is dependent on
the random number and all the preceding neighbors’ weight
sum. It exits once one neighbour is selected. Note that we
use these algorithms as typical examples to demonstrate
the effectiveness of our idea. They all share the basic code
pattern, which can be used as the building blocks of other
more complicated algorithms.

3 SympleGraph Overview

SympleGraph is a new distributed graph processing frame-
work that precisely enforces loop-carried dependency se-
mantics in UDFs. SympleGraph workflow consists of two
components. The first one is UDF analysis, which 1) deter-
mines whether the UDF contains loop-carried dependency;
2) if so, identifies the dependency state that need to be prop-
agated during the execution; and 3) instruments codes of
UDF to insert dependency communication codes executed by
the framework to enforce the dependency across distributed
machines.

The second component is system support for loop-carried
dependency on the analyzed UDF codes and communication
optimization. The key technique is dependency communica-
tion, which propagates dependency among mirrors and back
to master. To enforce dependency correctly, for a given ver-
tex, execution of UDF related to its neighbors assigned to
different machines must be performed sequentially. The key
challenge is how to enforce the sequential semantics while still
enabling enough parallelism? We solve this problem by cir-
culant scheduling and other communication optimizations
(Section 5.1).

4 SympleGraph Analysis

4.1 SympleGraph Primitives

SympleGraph provides dependency communication primi-
tives, which are used internally inside the framework and

transparent to programmers. Dependent message has a data
type DepMessage with two types of data members: a bit for

597

Youwei Zhuo, Jingji Chen, Qinyi Luo, Yanzhi Wang, Hailong Yang, Depei Qian, Xuehai Qian

control dependency, and data values for data dependency. To
enforce loop-carried dependency, the relevant UDFs need to
be executed sequentially. Two functions emit_dep<T> and
receive_dep<T> send and receive the dependency state of a
vertex, where the type of T is DepMessage. We first describe
how SympleGraph uses these primitives in the instrumented
codes. Shortly, we will describe the details of SympleGraph
analyzer to generate the instrumented codes.

Figure 5 shows the analyzed UDFs of bottom-up BFS with
dependency information and primitive. When processing
a vertex u, the framework first executes emit_dep to get
whether the following computation related to this vertex
should be skipped (Line 5 ~ 7). After the vertex u is added to
the current frontier, emit_dep is inserted to notify the next
machine which executes the function. Note that emit_dep
and emit_dep do not specify the sender and receiver of the
dependency message, it is intentional as such information
is pre-determined by the framework to support circulant
scheduling.

4.2 SympleGraph Analysis

To implement the dependent computation of function I in
Definition 2.4, we instrument I to include dependency com-
munication and leave C unchanged. We develop Symple-
Graph analyzer , a prototype tool based on Gemini’s signal-
slot programming abstraction. To simplify the analyzer de-
sign, we make the following assumptions on the UDFs.

e The UDFs store dependency data in capture variables of
lambda expressions. Copy statements of these variables are
not allowed so that we can locate the UDFs and variables.

e The UDFs traverse neighbor vertices in a loop.

Based on the assumptions, we design SympleGraph analyzer
as two passes in clang LibTooling at clang-AST level.

1. In the first pass, our analyzer locates the UDFs and ana-
lyzes the function body to determine whether loop-carried
dependency exists.

a. Use clang-lib to compile the source code and obtain the
corresponding Clang-AST.

Traverse the AST to: (1) locate the UDF; (2) locate all

process-edges (sparse-signal, sparse-slot, dense-signal,

dense-slot) calls and look for the definitions of all dense-
signal functions; (3) search for all for-loops that traverse
neighbors in dense-signal functions and check whether
loop-dependency patterns exist (there is at least one
break statement related to the for-loop); (4) store all

AST nodes of interests;

2. In the second pass, if the dependency exits, it identifies
the dependency state for communication and performs a
source-to-source transformation.

a. Insert dependency communication initialization code.
b. Before the loop in UDF, insert a new control flow that
checks dependency in preceding loops with receive_dep.

b.



SympleGraph: Distributed Graph Processing with Precise ...

1 struct DepBFS : DepMessage { // datatype
2 bit skip?;

3 )

4 def signal(Vertex v, Array[Vertex] nbrs) {
5 DepBFS d = receive_dep(v); // new code

6 if (d.skip?) {

7 return;

8 3

9 for u in nbrs(v) {

10 if (frontier[ul) {

11 emit(v, u);

12 emit_dep(v, d); // new code
13 break;

14 3

15 }

16 3

17 def slot(Vertex v, Vertex upt) {
18 . // no changes

19 3

Figure 5. SympleGraph instrumented bottom-up BFS UDFs

c. Inside the loop in UDF, insert emi t_dep before the corre-
sponding break statement to propagate the dependency
message.

Based on the codes in Figure 1 (b), SympleGraph analyzer
will generate the source codes in Figure 5.

4.3 Discussion

In this section, we discuss the alternative approaches that
can be used to enforce loop-carried dependency.

New Graph DSL. Besides the analysis, SympleGraph pro-
vides a new DSL and asks the programmer to express loop
dependency and state. We support a new functional interface
fold_while to replace the for-loop. It specifies a state machine
and takes three parameters: initial dependency data, a func-
tion that composes dependency state and current neighbor,
a condition that exits the loop. The compiler can easily deter-
mine the dependency state and generate the corresponding
optimized code.

Manual analysis and instrumentation. Some will argue
that if graph algorithms UDFs are simple enough, the pro-
grammers can manually analyze and optimize the code. Sym-
pleGraph also exposes communication primitives to the pro-
grammers so that they can still leverage the optimizations
when the code is not amendable to static analysis.

Manual analysis may even provide more performance
benefits because some optimizations are difficult for static
analysis to reason about. One example is the communication
buffer. In bottom-up BFS, users can choose to repurpose “vis-
ited” array as the break dependency state. The “visited” is
a bit vector and can be implemented as a bitmap. When we
record the dependency for a vertex, the “visited” has already
been set, so we can reduce computation by avoiding the bit
set operation in the dependency bitmap. When we send the
dependency, we can actually send “visited” and avoid the
memory allocation for dependency communication.

598

PLDI 20, June 15-20, 2020, London, UK

1 for v in VvV {

2 // mirror signal

3 for m in machines {

4 for mirror in m.mirrors(v) {

5

6 emit(v, upt) // update

7 emit_dep(v, dep) // dependency
8 }

9 }

10 3

Figure 6. Circulant Scheduling

However, writing such optimizations manually is not rec-
ommended for two reasons. First, the optimizations in mem-
ory footprint and computation are not the bottleneck to the
overall performance. The memory reduction is one bit per
vertex, while in every graph algorithm, the data field of each
vertex takes at least four bytes. As for the computation reduc-
tion, setting a bit sequentially in a bitmap is also negligible
compared with the random edge traversals. In our evalua-
tion, the performance benefit is not noticeable (within 1%
in execution time). Second, manual optimizations will affect
the readability of the source code, and increase the burden of
the user, hurting programmability. It contradicts the original
purpose of domain-specific systems. The programmers need
to have a solid understanding of both the algorithm and the
system. In the same example, there is another bitmap “fron-
tier” in the algorithm. However, it is incorrect to repurpose
“frontier” as the dependency data.

5 SympleGraph System

In this section, we discuss how SympleGraph schedules de-
pendency communication to enforces dependent execution
and several system optimizations.

5.1 Enforcing Dependency: Circulant Scheduling

By expanding the signal expressions in Figure 4 for all ver-
tices, we have Figure 6, a nested loop. Our goals are to 1)
parallelize the outer loop, and 2) enforce the dependency or-
der of the inner loop. However, if each vertex starts from the
same machine, the other machines are idle and parallelism
is limited. To preserve parallelism and enforce dependency
simultaneously, we have to schedule each vertex to start
with mirrors from different machines. We formalize the idea
as circulant scheduling, which divides the iteration into p
steps for p machines and execute I according to a circulant
permutation. In fact, any cyclic permutation will work, and
we choose one circulant for simplicity.

Definition 5.1. (Circulant scheduling) A circulant permu-
tation o is defined as o(i) = (i + p — 1)%p, and initially
o(i) =1i,i =0,...,(p — 1). The vertices in a graph is divided
into p disjoint sets according to he master vertices. Let u(?)
denote the sequence of neighbors of master vertices on ma-
chine i. In step j (j = 0,1,...,p — 1), circulant scheduling
executes I(u')) on machine ¢/(i).



PLDI 20, June 15-20, 2020, London, UK

MO M1 M2 M3

MO| S3 | S2 | S1 | SO

M1| 80 | S3 | S2 | S1

M2| S1 | SO | S3 | S2

M3| S2 | 81| SO | S3

(a) Computation Steps

Youwei Zhuo, Jingji Chen, Qinyi Luo, Yanzhi Wang, Hailong Yang, Depei Qian, Xuehai Qian

(b) Dependency Communication

(C) Update Communication

Figure 7. Circulant Scheduling Example

Circulant scheduling achieves the two goals and the cor-
rectness can be inferred from the properties of permutation.
For any specific vertex set, its execution follows the order of
I(ugi-t|ugo ® ugt @ ... ® u,j-2), starting from step 0. For any
specific step j, the scheduling specifies different machines,
because o7 is a permutation. For example, the permutation of
step 0 based on (0, 1,2, 3) is ¢° = (3,0, 1, 2). In step 0 (the first
step), I(u(®) (the sequence of neighbors of master vertices
on machine 0) is processed on machine 3 (¢°(0) = 3). In step
1 (the second step), o' = (2,3,0, 1), I(u) is processed on
machine 2 (¢1(0) = 2).

Figure 7 shows an example with four machines. Figure 7
(a) shows the matrix view of the graph. An element (ij)
in the matrix represents an edge (v;, v;). Similarly, we use
the notion [i, j] to represent a subgraph with edges from
machine i to machine j. Based on circulant scheduling, ma-
chine 0 first processes all edges in [0, 1] and then [0, 2], [0, 3],
[0, 0]. [0, 1] contains the edges between master vertices on
machine 1 and their neighbors in machine 0. The other ma-
chines are similar. In the same step, each machine i processes
edges in different subgraph [i,j] in parallel. For example,
in step 0, the subgraphs processed by machine 0,1,2,3 are
[0,1],[1, 2],[2, 3],[3, 0], respectively. After all steps, edges in
. i, j € {0,1, 2,3}, are processed sequentially.

Figure 7 (b) shows the step execution according to Figure 7
(a) with dependency communication. The dependency com-
munication pattern is the same for all steps: each machine
only communicates with the machine on its left. Note that
circulant scheduling enables more parallelism because each
machine processes disjoint sets of edges in parallel. It is still
more restrictive than arbitrary execution. Without circulant
scheduling, a machine has the freedom to process all edges
with sources allocated to this machine (a range of rows in
Fig6 (a)); with circulant scheduling, during a given step (a
part of an iteration), the machine can only process edges in
the corresponding subgraph. In another word, the machine
loses the freedom to process edges in other steps during this
period. The evaluation results in Section 7 will show that
the eliminated redundant computation and communication
can fully offset the effects of reduced parallelism.

599

Machine 1 Machine 2 Machine 3 Machine 4
PRRN
---FA- > F-f-t--»  --F-f->»
So .
PAREN PAREN RN RN
1 " >l M ol P ol
I > I > I > )
S_. N, N N _ .

master mirror

@ @ Machine 5 slot update dependency

Figure 8. Differentiated Dependency Propagation

Figure 7 also shows the key difference between depen-
dency and update communication. The dependency com-
munication happens between two steps because the next
step needs to receive it before execution to enforce loop-
carried dependency. For update communication, each ma-
chine will receive from all remote machines by the end of
the current iterations, when local reduction and update are
performed. The circulant scheduling will not incur much
additional synchronization overhead by transferring depen-
dency communication between steps because it is much
smaller than dependency communication. Moreover, before
starting a new step, if a machine does not wait for receiving
the full dependency communication from the previous step,
the correctness is not compromised. With incomplete infor-
mation, the framework will just miss some opportunities
to eliminate unnecessary computation and communication.
In fact, Gemini can be considered as a special case without
dependency communication.

5.2 Differentiated Dependency Propagation

This section discusses an optimization to further reduce com-
munication. In circulant scheduling, by default, every vertex
has dependency communication. For vertices with a lower
degree, they have no mirrors on some machines, thus depen-
dency communication is unnecessary. Figure 8 shows the
execution of two vertices L and H in basic circulant schedul-
ing. The system has five machines. Two vertices have masters
in machine 1. For simplicity, the figure removes the edges



SympleGraph: Distributed Graph Processing with Precise ...

for signal functions. The green and red edges are update and
dependency messages. For vertex H, every other machine
has its mirror. Therefore, the dependency message is propa-
gated across all mirrors and potentially reduces computation
and update communication in some mirrors. For vertex L,
only machine 2 has its mirror. However, we still propagate
its dependency message from machine 1 to machine 5.

One naive solution to avoid unnecessary communication
for vertex L is to store the mirror information in each mirror.
Before sending the dependency communication of a vertex,
we first check the machine number of the next mirror. How-
ever, the solution is infeasible for three reasons: First, the
memory overhead for storing the information is prohibitive.
The space complexity is the same as the total number of mir-
rors O(|E|). Second, dependency communication becomes
complicated in circulant scheduling. Consider a vertex with
mirrors in machine 2 and machine 4, even when there is no
mirror of the vertex on machine 3, we still need to send a
message from machine 2 to 3 because we cannot discard any
message in circulant communication. Third, it does not allow
batch communication, since the communication pattern for
contiguous vertices are not the same.

To reduce dependency communication with smaller bene-
fits, we propose to differentiate the dependency communi-
cation for high-degree and low-degree vertices. The degree
threshold is an empirical constant. The intuition is that de-
pendency communication is the same for the high-degree
and low-degree vertices, but the high-degree vertices can
save more update communication. Therefore, SympleGraph
only propagates dependency for high-degree vertices. For
low-degree vertices, we can fall back to the original sched-
ule: each mirror directly sends the update messages to the
machine with the master vertex.

Differentiated dependency propagation is a trade-off. Falling
back for low-degree vertices may reduce the benefits of
reducing the number of edges traversed. However, since
the low-degree vertices have fewer neighbors, the redun-
dant computation due to loop-carried dependency is also
insignificant, because it skips less neighbors. PowerLyra [11]
proposed differentiated graph partition optimization that
reduces update communication for low-degree vertices. In
SympleGraph, differentiation is relevant to dependency com-
munication, and it is orthogonal to graph partition.

5.3 Hiding Latency with Double Buffering

In circulant scheduling, although disjoint sets of vertices
can be executed in parallel within one step, and the com-
putation and update communication can be overlapped, the
dependency communication appears in the critical path of
execution between steps. Before each step, every machine
waits for the dependency message from the predecessor ma-
chine. It is not a global synchronization for all machines:
synchronization between machine 1 and 3 is independent
of that between machine 1 and 2. However, it still impairs

600

PLDI 20, June 15-20, 2020, London, UK

machine 1 machine 3
PERREN PERREVEREN
12A N 1 1A )1B )| step1
Sav AN ‘-%
Se-----3 [ N
VARRN .\‘z"\ \
step 1 12B p] ! oA} [
ACRe \‘I\ hCRe step 2
:\t'\
""""""" - 2B )
Noo

Figure 9. Double buffering

performance. Besides the extra latency due to the depen-
dency message, it also incurs load imbalance within the step.
However, all existing load balancing techniques focus on an
entire iteration and cannot solve our problem. As a result,
the overall performance is affected by the slowest step.

We propose double buffering optimization that enables
computation and dependency communication overlap and
alleviates load imbalance. Figure 9 demonstrates the key
idea with an example. We consider two machines and the
first two steps. Specifically, the figure shows the dependency
communication from machine 1 to machine 3 in step 1 in
red. We also add back the blue signal edges to represent
the computation on the mirrors. In circulant scheduling, the
dependency communication starts after all computation is
finished for the mirrors of partition 2 in machine 1.

With double buffering, we divide the mirror vertices in
each step into two groups, A and B. First, each machine
processes group A and generates its dependency information,
which is sent before the processing of vertices in group B.
Therefore, the computation on group B is overlapped with
the dependency communication for group A, and can be done
in the background. In the example, machine 3 will receive
the dependency message of group 2A earlier so that the
processing of vertices in group 2A in machine 3 does not need
to wait until machine 1 finishes processing all vertices in both
group 2A and 2B. After the second group is processed, its
dependency message is sent, and the current step completes.
Before starting the next step, machine 3 only needs to wait
for the dependency message for group A, which was initiated
earlier before the end of the step.

Double buffering optimization addresses two performance
issues. First, at the sender side, group A communication is
overlapped with group B, while group B communication
can be overlapped with group A computation in the next
step. Second, the synchronization wait time is reduced due
to reduced load imbalance. Consider the potential scenario
of load imbalance in Figure 9, machine 3 (receiver) has much
less load in step 1 and proceeds to the next step before ma-
chine 1. only waits for the dependency message of group A.
Since that message is sent first, it is likely to have already
arrived. Without double buffering, machine 3 has to wait for
the full completion of machine 1 in step 1.



PLDI 20, June 15-20, 2020, London, UK

Importantly, the double buffering optimization can be per-
fectly combined with the differentiated optimization. We
can consider the high-degree and low-degree vertices as two
groups. Since processing low-degree vertices does not need
synchronization, we can overlap it with dependency com-
munication. In the example, if dependency from machine 1
has not arrived, we can start low-degree vertices in step 2
without waiting.

6 Implementation Details

SympleGraph is implemented using C++ based on Gemini
and its signal-slot interface. The key component is the de-
pendency communication library.

SympleGraph builds dependency data structure from data
fields in struct DepMessage. Dependency primitives will ac-
cess the data structures by setting and reading the bits/data
of each vertex. For efficient parallel access, we organize the
data in Struct of Arrays (SOA). Each data field is instantiated
as an array of the type. The size of each array is the num-
ber of vertices. The special bit field designed for the control
dependency will become a bitmap data structure.

On each machine, SympleGraph starts a dependency com-
munication coordinator thread responsible for transferring
dependency message and synchronization. Before execution,
coordinator threads set up network connection and initialize
the dependency data structures. SympleGraph also considers
NUMA-aware optimizations: we set the affinity of coordina-
tor and the communication buffer for better NUMA locality.

To leverage multi-core hardware in each machine, we start
multiple worker threads. During the execution, each worker
thread generates the dependency message and notifies the
coordinator thread. Before the execution, each worker thread
queries the coordinator to check whether the dependency
message has arrived. The granularity of worker-coordinator
notification is a critical factor for communication latency.
If we batch all the communication in worker threads, the
latency of dependency will increase. If we send the mes-
sage too frequently, the worker-coordinator synchronization
overhead becomes considerable.

To implement circulant scheduling, we change the sched-
uling order in the framework. For differential propagation,
we need to divide the vertices into two groups by their de-
grees in the pre-processing step. For the degree threshold,
we search powers of two with the best performance and use
32 for all evaluation experiments. In the implementation,
we generalize double-buffering by supporting more than
two buffers to handle different overlap cases. If the process-
ing of low-degree vertices cannot be fully overlapped with
dependency communication, more buffers are necessary.

SympleGraph supports RDMA network using MPI. We use
MPI_Put for one-sided communication. For synchronization
across steps, we use MPI_Win_lock/MPI_W in_unlock op-
erations to start/end a RDMA epoch on the sender side. It

601

Youwei Zhuo, Jingji Chen, Qinyi Luo, Yanzhi Wang, Hailong Yang, Depei Qian, Xuehai Qian

is the “passive target synchronization” where the remote
receiver does not participate in the communication. It incurs
no CPU overhead on the receiver side.

7 Evaluation

We evaluate SympleGraph, Gemini [61], and D-Galois [13].
D-Galois is a recent state-of-the-art distributed graph pro-
cessing frameworks with better performance than Gemini
with 128 to 256 machines.

In the following, we describe the evaluation methodol-
ogy. After that, we show the results of several important
aspects: 1) comparison of overall performance among the
three frameworks; 2) reduction in communication volume
and computation cost; 3) scalability; and 4) piecewise contri-
bution of each optimization.

7.1 Evaluation Methodology

System configuration. We use three clusters in the evalua-
tion: (1) Cluster-A is a private cluster with 16 nodes. In each
node, there are 2 Intel Xeon E5-2630 CPUs (8 cores/CPU)
and 64 GB DRAM. The operating system is CentOS 7.4. MPI
library is OpenMPI 3.0.1. The network is Mellanox Infini-
Band FDR (56Gb/s). The following evaluation results are con-
ducted in Cluster-A unless otherwise stated. (2) Cluster-B is
Stampede2 Skylake (SKX) at the Texas Advanced Computing
Center [39]. Each node has 2 Intel Xeon Platinum 8160 (24
cores/CPU) and 192 GB DRAM with 100Gb/s interconnect.
It is used to reproduce D-Galois results, which requires 128
machines and fails to fit in Cluster-A. (3) Cluster-C consists
of 10 nodes. Each node is equipped with two Intel Xeon
E5-2680v4 CPUs (14 cores/CPU) and 256GB memory. The
network is InfiniBand FDR (56Gb/s). It is used to run the two
large real-world graphs (Clueweb-12 and Gsh-2015), which
requires larger memory and fails to fit in Cluster-A.

Graph Dataset. The datasets are shown in Table 1. There
are four real-world datasets and three synthesized scale free
graphs with R-MAT generator [10]. We use the same gener-
ator parameters as in Graph500 benchmark [21].

Table 1. Graph datasets. [V’| is the number of high-degree
vertices

Graph Abbrev. | [v| | B | I
Twitter-2010 [28] tw 42M | 1.5B | 0.13
Friendster [30] fr 66M | 1.8B | 0.31
R-MAT-Scale27-E32 s27 134M | 4.3B | 0.12
R-MAT-Scale28-E16 s28 268M | 4.3B | 0.09
R-MAT-Scale29-E8 s29 537M | 4.3B | 0.04
Clueweb-12 [8, 42] cl 978M | 43B | 0.12
Gsh-2015 [7] gsh 988M | 34B | 0.28

For experiments in Cluster-A, we generate three largest
possible synthesized graph that fits in its memory. Any larger



SympleGraph: Distributed Graph Processing with Precise ...

graph will cause an out-of-memory error. The scales (loga-
rithm of the number of vertices) are 27, 28 and 29 and the
edge factor (average degree of a vertex) are 32, 16 and 8,
respectively. To run undirected algorithms using directed
graphs, we consider every directed edge as its undirected
counterpart. To run directed algorithms using undirected
graphs, we convert the undirected datasets to directed graphs
by adding reverse edges.
Graph Algorithms. We evaluate five algorithms discussed
before. We use the reference implementations when they are
available in Gemini and D-Galois. While SympleGraph only
benefits the bottom-up BFS, we use adaptive direction-switch
BFS [48] that chooses from both top-down and bottom-up
algorithms in each iteration. * > We follow the optimization
instructions in D-Galois by running all partition strategies
provided and report the best one as the baseline. ¢

For BFS, we average the experiment results of 64 randomly
generated non-isolated roots. For each root, we run the al-
gorithm 5 times. For K-core, 2-core is a subroutine widely
used in strongly connected component [26] algorithm. We
also evaluate other values of K. For K-means, we choose the
number of clusters as \/m and runs the algorithm for 20 iter-
ations. For algorithms other than BFS, we run the application
20 times and average the results.

7.2 Performance

Table 4 shows the execution time of all systems. Symple-
Graph outperforms both Gemini and D-Galois with 1.46x
geomean (up to 3.05x) speedup over the best of the two.
For the three synthesized graphs with the same number of
edges but different edge factor (s27, s28, and s29), graphs
with larger edge factor have slightly higher speedup in Sym-
pleGraph. For K-core, the numbers in parenthesis use the
optimal algorithm with linear complexity in the number
of nodes and no loop dependency [34]. It is slower than
SympleGraph for large synthesized graphs, but significantly
faster for Twitter-2010 and Friendster. The reason is that
the algorithm is suitable for graphs with large diameters.
Although real-world social graphs have relatively small di-
ameters, they usually have a long link structure attached to
the small-diameter core component.

K-core. Table 2 shows the execution time (using 8 Cluster-A
nodes) for different values of K. SympleGraph has consistent
speedup over Gemini regardless of K.

Large Graphs. We run Gemini and SympleGraph with the
two large real-world graphs (Gsh-2015 and Clueweb-12) on
Cluster-C. SympleGraph has no improvement for BFS and

4 Adaptive switch is not available in D-Galois. For fair comparison, we
implement the same switch in D-Galois.

3Graph sampling implementation is not available in D-Galois.

®We exclude Jagged Cyclic Vertex-Cut and Jagged Blocked Vertex-Cut (in all
algorithms) and Over decomposed by 2/4 Cartesian Vertex-Cut (in K-core),
because the reference implementations either crashed or produced incorrect
results.

602

PLDI 20, June 15-20, 2020, London, UK

Table 2. K-core runtime (in seconds)

Graph | K | Gemini | SympleG. | Speedup
4 | 1.9663 1.3009 1.51
8 | 2.9752 2.0595 1.44
tw 16 | 4.9062 3.2957 1.49
32 | 5.8374 3.7916 1.54
64 | 7.5694 5.1717 1.46
4 | 14.7322 10.3543 1.42
8 | 10.1319 6.7909 1.49
fr 16 | 11.5904 7.4135 1.56
32 | 21.8317 | 13.4914 1.62
64 | 17.9096 | 11.4387 1.57

K-means in Clueweb-12. The reason is that bottom-up algo-
rithm efficiency depends on graph property. In cl, it is slower
than top-down BFS for most iterations, so they are not cho-
sen by the adaptive switch. In other test cases, SympleGraph
is noticeably better than Gemini.

Table 3. Execution time(in seconds) on large graphs

Graph App. Gemini | SympleG. | Speedup
BFS 4.5843 4.6031 1.00
MIS 7.3186 4.1530 1.76
gsh K-core 24.1753 13.4465 1.80
K-means | 84.7207 75.7227 1.12
Sampling | 4.6578 3.4686 1.34
BFS 16.8839 17.9272 1.00
MIS 11.9406 6.8330 1.75
cl K-core 171.8570 | 97.7020 1.76
K-means | 128.5634 | 142.6216 1.00
Sampling | 4.5093 | 3.6143 1.25

7.3 Computation and Communication Reduction

The source of performance speedup in SympleGraph is mainly
due to eliminating unnecessary computation and communi-
cation with precisely enforcing loop-carried dependency. In
graph processing, the number of edges traversed is the most
significant part of computation. Table 5 shows the number of
edges traversed in Gemini and SympleGraph. The first two
columns are edge traversed in Gemini and SympleGraph. The
last column is their ratio. We see that SympleGraph reduces
edge traversal across all graph datasets and all algorithms
with a 66.91% reduction on average.

For communication, Gemini and other existing frame-
works only have update communication, while SympleGraph
reduces updates but introduces dependency communication.
Table 6 shows the breakdown of communication in Symple-
Graph. Communication size is counted by message size in
bytes and all the numbers are normalized to the total commu-
nication in Gemini. The first (SympleGraph.upt) and second



PLDI 20, June 15-20, 2020, London, UK

Table 4. Execution Time (in seconds)

Youwei Zhuo, Jingji Chen, Qinyi Luo, Yanzhi Wang, Hailong Yang, Depei Qian, Xuehai Qian

Table 5. Number of traversed edges (Normalized to total
number of edges in the graph)

Graph Gemini D-Galois SymG. Speedup Graph Gemini SympG. SympG./Gemini

tw 0.608 2.053 0.264 2.30 tw 04383 0.2214 0.5051

- fr 1.212 4.993 0.706 1.72 - fr 0.8537  0.3435 0.4024
5 s27 1.054 2.681 0.733 1.44 = s27 03089 0.0870 0.2815
$28 1.325 3.682 0.976 1.36 s28 03586  0.1348 0.3760

$29 1.760 5.356 1.372 1.28 $29  0.4716  0.1879 0.3985

tw  3.021(0.184)  4.125 2.190 1.38 tw  2.6421  1.1986 0.4537

) fr 11.258(0.580) 17.213  7.390 1.52 ) fr 11.3283  3.1951 0.2820
S s27  2754(1.885) 3512  1.640  1.68 S s27 11188  0.3498 0.3126
Mo 528 4.432(4.779) 6.056 2.663 1.66 M g28 18717  0.6165 0.3294
s29  5.413(10.330)  8.534 3.806 1.42 $29 24237 10513 0.4338

tw 2.081 4.056 1.421 1.46 tw  3.9014  1.9750 0.5062

- fr 2.363 5.045 1.754 1.35 - fr 5.4431  2.0479 0.3762
S s27 2.720 5.329 1.861 1.46 S s27 31328 08717 0.2782
$28 3.031 7.110 2.408 1.26 $28  3.4390 1.0174 0.2958

$29 3.600 8.620 2.835 1.27 $29  3.7762  1.1970 0.3170

L, tw 17.590 56.748  12.688  1.39 , tw 133972 55608 0.4151
g fr 19.212 78.526  13.143 1.46 g fr 2.5798  1.8989 0.7361
g s27 27.626 61.598  19.279  1.43 “E’ s27  5.6167 17196 0.3062
v s28 34.393 86.632  26.919  1.28 w  s28  8.8354 27847 0.3152
$29 52.087 116.307 41760  1.25 $29  13.6472 5.3375 0.3911
I 0.786 0.867 0.91 w W 1.0313  0.2143 0.2078
5 fr 1.180 0.977 1.21 g fr 1.2097  0.1290 0.1066
g $27 1.388 N/A 1.090 1.27 g s27 11096  0.0709 0.0639
S s28 2.051 1.331 1.54 S s28 11498 0.0966 0.0840
$29 2.932 1.869 1.57 $29 11912 0.1172 0.0984

(SympleGraph.dep) column show update and dependency
communication, respectively. The last column is the total
communication of SympleGraph.

There are two important observations. First, s27, s28, and
s29 have the same total number of edges, while s27 traverses
consistently less edges than s28 and s29 in all algorithms. On
average, SympleGraph on s27 traverses 24.8% edges com-
pared with Gemini, while on s29 traverses 32.8%. When
the graph structure is similar (R-MAT), the number of tra-
versed edges is less in graphs with a larger average degree.
A large average degree means more high-degree vertices
that SympleGraph optimizes in differentiated computation.
Therefore, s27 has more potential edges when considering
reducing computation. Second, in terms of total communica-
tion size, SympleGraph is less than Gemini in all algorithms
except graph vertex sampling. For these algorithms, control
dependency communication is one bit per vertex because
the dependency information indicates whether the vertex in
the previous step has skipped the loop. For graph sampling,
data dependency communication is the current prefix sum.
It is one floating-point number for one vertex; thus total
communication might increase.

603

7.4 Scalability

We first compare the scalability results of SympleGraph with
Gemini and D-Galois, running MIS on graph s27 (Figure 10).
The execution time is normalized to SympleGraph with 16
machines. The data points for Gemini and SympleGraph
with 1 machine are missing because the system is out of
memory. Both Gemini and SympleGraph achieves the best
performance with 8 machines. D-Galois scales to 16 ma-
chines, but its best performance requires 128 to 256 machines
according to [13]. In summary, SympleGraph is consistently

O e .\\\
4.00 Ses

o Rt N
£ Tl
s -
c
=]
[
D 2.00
N
®
€
T
)
4

—— Gemini

1.00 SympleG
-+ D-Galois
1.00 2.00 4.00 8.00 16.00
#nodes

Figure 10. Scalability (MIS/s27)



SympleGraph: Distributed Graph Processing with Precise ...

Table 6. SympleGraph communication breakdown (normal-
ized to total communication volume in Gemini)

Graph SymG.upt SymG.dep SymG

tw 0.7553 0.0446 0.7999
" fr 0.4657 0.0429 0.5085
g s27 0.4151 0.0175 0.4326
s28 0.4855 0.0193 0.5047
529 0.5993 0.0154 0.6147
tw 0.5377 0.0074 0.5450
e fr 0.3646 0.0074 0.3719
.8 s27 0.3705 0.0051 0.3755
M 528 0.3987 0.0051 0.4038
s29 0.5028 0.0039 0.5067
tw 0.4721 0.0313 0.5034
i fr 0.3639 0.0259 0.3898
E s27 0.3053 0.0199 0.3252
528 0.3336 0.0208 0.3544
s29 0.4127 0.0160 0.4287
- tw 0.6854 0.0250 0.7103
ﬁ fr 0.7044 0.0393 0.7437
g s27 0.3306 0.0100 0.3406
Y s28 0.3797 0.0118 0.3915
s29 0.5188 0.0106 0.5294
o0 tw 0.1877 1.1578 1.3455
é fr 0.1637 0.7238 0.8875
E“ s27 0.1706 0.6558 0.8264
S s28 0.2106 0.7050 0.9157
529 0.2565 0.7504 1.0069

better than Gemini and D-Galois with 16 machines. From
8 to 16 machines, SympleGraph has a smaller slowdown
compared with Gemini, thanks to the reduction in commu-
nication and computation. Thus, SympleGraph scales better
than Gemini.

COST. The COST metric [36] is an important measure of
scalability for distributed systems. It is the number of cores
a distributed system need to outperform the fastest single-
thread implementation. We use the MIS algorithm in Ga-
lois [38] and s27 graph as the single-thread baseline. The
COST of Gemini and SympleGraph is 4, while the COST of
D-Galois is 64. We also use the BFS algorithm in GAPBS [5]
and tw graph as another baseline. GAPBS finishes in 2.29
seconds while SympleGraph takes 2.66 and 1.83 seconds for
2 and 3 threads, respectively. The cost of SympleGraph is 3.
D-Galois. To evaluate the best performance of D-Galois, We
reproduce the results with Cluster-B. The results are shown
in Table 7. As the SKX nodes have more powerful CPUs and
network, SympleGraph requires less number of nodes (2 or
4 nodes) for the best performance. D-Galois achieves similar
or worse performance with 128 nodes. While D-Galois scales
better with a large number of nodes, running increasingly
common graph analytics applications in the supercomputer
is not convenient. In fact, for these experiments, the jobs have

604

PLDI 20, June 15-20, 2020, London, UK

waited for days to be executed. Based on the results, Sym-
pleGraph on a local cluster with 4 nodes can fulfill the work
of D-Galois with 128 nodes. We believe using SympleGraph
on a small-scale distributed cluster is the most convenient
and practical solution.

Table 7. Execution time (in seconds) of MIS using the best-
performing number of nodes (in parenthesis) on Stampede2

Graph \ D-Galois \ SympleGraph

tw | 1.321(128) 1.113(2)
fr | 1.355(128) 0.823(4)
s27 | 1.258(128) 0.911(4)
28 | 1.380(128) 1.159(4)
$29 | 1.565(128) 1.420(4)

7.5 Analysis of SympleGraph Optimizations

In this section, we analyze the piecewise contribution of the
proposed optimizations over circulant scheduling, i.e., dif-
ferential dependency propagation, and double buffering. We
run all applications on four versions of SympleGraph with
different optimizations enabled. Due to space limit, Figure 11
only shows the geometric average results of all algorithms.
For each graph dataset, we normalize the runtime to the
version with basic circulant scheduling. Note that here the
baseline is not Gemini.

Double buffering effectively reduce the execution time in
all cases. It successfully hides the latency of dependency com-
munication and reduces synchronization overhead. Differen-
tial propagation optimization alone has little performance
impact, because synchronization is still the bottleneck with-
out double buffering. When combined with double buffering,
differential propagation has a noticeable effect. This shows
that our trade-off consideration in update and dependency
communication is effective. Overall, when all optimizations
are applied, the performance is always better than individual
optimization.

g 1.4 I Double Buffering(DB)
'-g 1.2 Differentiated Propagation(DP) )
2 ' BN SympleGraph(DB+DP)
- 1.0
] 7 7 7
E 0.8 =i /) 6 Z 6 6
© V- V7 2 17 v
£ 77
50.6 Z Z /
2 Z 7
___________ 7
¢o0.4
s
g 0.2 SN BN AN - B AN
<
0.0 -
tw fr s27 s28 s29

Figure 11. Analysis of optimizations (baseline is Symple-
Graph with only circulant scheduling)



PLDI 20, June 15-20, 2020, London, UK

8 Related Work

BFS Systems [6, 9] are distributed BFS systems for high per-
formance computing. They enforce loop-carried dependency
only for BFS and a specific graph partition. SympleGraph
works for general graph algorithms and data partitions.
Edge-centric Graph Systems (X-stream) [44] proposes edge-
centric programming model. It is motivated by the fact that
sequential access bandwidth is larger than random band-
width for all storage (memory and disk). X-stream partitions
the graph into edge blocks and process all the edges in the
block sequentially. However, the updates to the destination
vertices are random. To avoid random access, X-stream main-
tains an update list and append the updates sequentially.
For each vertex, its updates are scattered in the list. It is
infeasible to track the dependency and skip computation
in X-stream. Edge-centric systems have other drawbacks
and recent state-of-the-art systems are vertex-centric. There-
fore, SympleGraph is based on vertex-centric programming
model.

Asynchronous Graph Systems [33, 52-54] proposes to re-
lax the dependency of different vertex functions H across
iterations. SympleGraph enforces dependency in I (in Defi-
nition 2.1) within one iteration. The dependency is different
and thus the optimizations are orthogonal. We will leave it
as future work to enable both in one system.

Graph compiler. IrGL [40] and Abelian [17] are similar to
the first analysis part in SympleGraph. IrGL focuses on in-
termediate representation and architecture-specific (GPU)
optimizations. Abelian automates some general communica-
tion optimizations with static code instrumentation. For ex-
ample, on-demand optimization reduces communication by
recording the updates and sending only the updated values.
SympleGraph also uses instrumentation, but the objective is
to transform loop-carried dependency, which is not explored
in graph compilers.

Graph Domain Specific Language (DSL). Some DSLs (e.g.,
GreenMarl [24] and GRAPE [15]) capture algorithm infor-
mation by asking the users to program in a new program-
ming interface that can express new semantics. For example,
GRAPE describes graph algorithms with “partial evaluation”,
“incremental evaluation” and “combine”. GRAPE system im-
plementation is not efficient: the reported distributed per-
formance on 24 machines is worse than single-thread naive
implementation on a laptop [35].

9 Conclusion

This paper proposes SympleGraph, a novel framework for
distributed graph processing that precisely enforces loop-
carried dependency, i.e., when a condition is satisfied by a
neighbor, all following neighbors can be skipped. Symple-

Graph analyzes user-defined functions and identifies the
loop-carried dependency. The distributed framework en-

forces the precise semantics by performing dependency prop-
agation dynamically. To achieve high performance, we apply

605

Youwei Zhuo, Jingji Chen, Qinyi Luo, Yanzhi Wang, Hailong Yang, Depei Qian, Xuehai Qian

circulant scheduling in the framework to allow different ma-
chines to process disjoint sets of edges and vertices in parallel
while satisfying the sequential requirement. To further im-
prove communication efficiency, SympleGraph differentiates
dependency communication and applies double buffering.
In a 16-node setting, SympleGraph outperforms Gemini and
D-Galois on average by 1.42x and 3.30%, and up to 2.30x and
7.76X, respectively. The communication reduction compared
to Gemini is 40.95% on average, and up to 67.48%.

Acknowledgments

We would like to thank the anonymous reviewers for their
helpful feedback. This work is supported by National Science
Foundation (Grant No. CCF-1657333, CCF-1717754, CNS-
1717984, CCF-1750656, CCF-1919289). This work used the
Extreme Science and Engineering Discovery Environment
(XSEDE), which is supported by National Science Foundation
grant number ACI-1548562 through allocation CCR190022.
We used the Stampede?2 system at the Texas Advanced Com-
puting Center (TACC).

References

[1] Tero Aittokallio and Benno Schwikowski. 2006. Graph-based methods
for analysing networks in cell biology. Briefings in bioinformatics 7, 3
(2006), 243-255.

[2] Andrei Alexandrescu and Katrin Kirchhoff. 2007. Data-Driven Graph

Construction for Semi-Supervised Graph-Based Learning in NLP.. In

HLT-NAACL. 204-211.

Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-

Gonzalez, Vinicius Zambaldi, Mateusz Malinowski, Andrea Tacchetti,

David Raposo, Adam Santoro, Ryan Faulkner, et al. 2018. Relational

inductive biases, deep learning, and graph networks. arXiv preprint

arXiv:1806.01261 (2018).

Scott Beamer, Krste Asanovi¢, and David Patterson. 2012. Direction-

optimizing Breadth-first Search. In Proceedings of the International

Conference on High Performance Computing, Networking, Storage and

Analysis (Salt Lake City, Utah) (SC ’12). IEEE Computer Society Press,

Los Alamitos, CA, USA, Article 12, 10 pages. http://dl.acm.org/citation.

cfm?id=2388996.2389013

[5] Scott Beamer, Krste Asanovi¢, and David Patterson. 2015. The GAP
Benchmark Suite. arXiv:cs.DC/1508.03619

[6] Scott Beamer, Aydin Buluc, Krste Asanovic, and David Patterson. 2013.

Distributed memory breadth-first search revisited: Enabling bottom-up

search. In 2013 IEEE International Symposium on Parallel & Distributed

Processing, Workshops and Phd Forum. IEEE, 1618-1627.

Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna. 2011.

Layered label propagation: A multiresolution coordinate-free ordering

for compressing social networks. In Proceedings of the 20th interna-

tional conference on World wide web. ACM, 587-596.

Paolo Boldi and Sebastiano Vigna. 2004. The webgraph framework

I: compression techniques. In Proceedings of the 13th international

conference on World Wide Web. ACM, 595-602.

Aydin Buluc, Scott Beamer, Kamesh Madduri, Krste Asanovic, and

David Patterson. 2017. Distributed-memory breadth-first search on

massive graphs. arXiv preprint arXiv:1705.04590 (2017).

[10] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. 2004.

R-MAT: A recursive model for graph mining. In Proceedings of the 2004
SIAM International Conference on Data Mining. SIAM, 442-446.

3

[t

[4

—

7

—

8

—

[9

—


http://dl.acm.org/citation.cfm?id=2388996.2389013
http://dl.acm.org/citation.cfm?id=2388996.2389013
http://arxiv.org/abs/cs.DC/1508.03619

—_

—

SympleGraph: Distributed Graph Processing with Precise ...

[11] Rong Chen, Jiaxin Shi, Yanzhe Chen, and Haibo Chen. 2015. PowerLyra:

Differentiated Graph Computation and Partitioning on Skewed Graphs.
In Proceedings of the Tenth European Conference on Computer Systems
(Bordeaux, France) (EuroSys ’15). ACM, New York, NY, USA, Article 1,
15 pages. https://doi.org/10.1145/2741948.2741970

Thayne Coffman, Seth Greenblatt, and Sherry Marcus. 2004. Graph-
Based Technologies for Intelligence Analysis. Commun. ACM 47, 3
(March 2004), 45aA$47. https://doi.org/10.1145/971617.971643
Roshan Dathathri, Gurbinder Gill, Loc Hoang, Hoang-Vu Dang, Alex
Brooks, Nikoli Dryden, Marc Snir, and Keshav Pingali. 2018. Gluon: A
Communication-optimizing Substrate for Distributed Heterogeneous
Graph Analytics. In Proceedings of the 39th ACM SIGPLAN Conference
on Programming Language Design and Implementation (Philadelphia,
PA, USA) (PLDI 2018). ACM, New York, NY, USA, 752-768. https:
//doi.org/10.1145/3192366.3192404

Anton J Enright and Christos A Ouzounis. 2001. BioLayoutaATan
automatic graph layout algorithm for similarity visualization. Bioin-
formatics 17, 9 (2001), 853-854.

Wenfei Fan, Jingbo Xu, Yinghui Wu, Wenyuan Yu, Jiaxin Jiang, Zeyu
Zheng, Bohan Zhang, Yang Cao, and Chao Tian. 2017. Paralleliz-
ing Sequential Graph Computations. In Proceedings of the 2017 ACM
International Conference on Management of Data (Chicago, Illinois,
USA) (SIGMOD °17). ACM, New York, NY, USA, 495-510. https:
//doi.org/10.1145/3035918.3035942

Francois Fouss, Alain Pirotte, Jean-Michel Renders, and Marco Saerens.
2007. Random-walk computation of similarities between nodes of a
graph with application to collaborative recommendation. IEEE Trans-
actions on knowledge and data engineering 19, 3 (2007), 355-369.
Gurbinder Gill, Roshan Dathathri, Loc Hoang, Andrew Lenharth, and
Keshav Pingali. 2018. Abelian: A Compiler for Graph Analytics on Dis-
tributed, Heterogeneous Platforms. In European Conference on Parallel
Processing. Springer, 249-264.

[18] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and

Carlos Guestrin. 2012. PowerGraph: Distributed Graph-parallel Com-
putation on Natural Graphs. In Proceedings of the 10th USENIX Con-
ference on Operating Systems Design and Implementation (Hollywood,
CA, USA) (OSDI’'12). USENIX Association, Berkeley, CA, USA, 17-30.
http://dl.acm.org/citation.cfm?id=2387880.2387883

[19] Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave, Daniel Crankshaw,

Michael J. Franklin, and Ion Stoica. 2014. GraphX: Graph Processing in
a Distributed Dataflow Framework. In Proceedings of the 11th USENLX
Conference on Operating Systems Design and Implementation (Broom-
field, CO) (OSDI'14). USENIX Association, Berkeley, CA, USA, 599-613.
http://dl.acm.org/citation.cfm?id=2685048.2685096

Amit Goyal, Hal Daumé III, and Raul Guerra. 2012. Fast large-scale
approximate graph construction for nlp. In Proceedings of the 2012
Joint Conference on Empirical Methods in Natural Language Process-
ing and Computational Natural Language Learning. Association for
Computational Linguistics, 1069-1080.

Graph500. 2010. Graph 500 Benchmarks. http://www.graph500.org.
Aditya Grover and Jure Leskovec. 2016. Node2Vec: Scalable Feature
Learning for Networks. In Proceedings of the 22Nd ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining (San
Francisco, California, USA) (KDD ’16). ACM, New York, NY, USA,
855-864. https://doi.org/10.1145/2939672.2939754

Ziyu Guan, Jiajun Bu, Qiaozhu Mei, Chun Chen, and Can Wang. 2009.
Personalized tag recommendation using graph-based ranking on multi-
type interrelated objects. In Proceedings of the 32nd international ACM
SIGIR conference on Research and development in information retrieval.
ACM, 540-547.

Sungpack Hong, Hassan Chafi, Edic Sedlar, and Kunle Olukotun. 2012.
Green-Marl: A DSL for Easy and Efficient Graph Analysis. SIGPLAN
Not. 47, 4 (March 2012), 3494A$362. https://doi.org/10.1145/2248487.
2151013

PLDI 20, June 15-20, 2020, London, UK

[25] Sungpack Hong, Siegfried Depner, Thomas Manhardt, Jan Van
Der Lugt, Merijn Verstraaten, and Hassan Chafi. 2015. PGX.D: A
Fast Distributed Graph Processing Engine. In Proceedings of the In-
ternational Conference for High Performance Computing, Networking,
Storage and Analysis (Austin, Texas) (SC '15). ACM, New York, NY,
USA, Article 58, 12 pages. https://doi.org/10.1145/2807591.2807620

[26] Sungpack Hong, Nicole C. Rodia, and Kunle Olukotun. 2013. On Fast
Parallel Detection of Strongly Connected Components (SCC) in Small-
world Graphs. In Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis (Denver,
Colorado) (SC ’13). ACM, New York, NY, USA, Article 92, 11 pages.
https://doi.org/10.1145/2503210.2503246

[27] Imranul Hoque and Indranil Gupta. 2013. LFGraph: Simple and Fast
Distributed Graph Analytics. In Proceedings of the First ACM SIGOPS
Conference on Timely Results in Operating Systems (Farmington, Penn-
sylvania) (TRIOS ’13). ACM, New York, NY, USA, Article 9, 17 pages.
https://doi.org/10.1145/2524211.2524218

[28] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. 2010.
What is Twitter, a Social Network or a News Media?. In Proceedings of
the 19th International Conference on World Wide Web (Raleigh, North
Carolina, USA) (WWW ’10). ACM, New York, NY, USA, 591-600. https:
//doi.org/10.1145/1772690.1772751

[29] Nicolas Le Novere, Michael Hucka, Huaiyu Mi, Stuart Moodie, Falk
Schreiber, Anatoly Sorokin, Emek Demir, Katja Wegner, Mirit I Alad-
jem, Sarala M Wimalaratne, et al. 2009. The systems biology graphical
notation. Nature biotechnology 27, 8 (2009), 735-741.

[30] Jure Leskovec and Andrej Krevl. 2014. friendster. https://snap.stanford.
edu/data/com-Friendster.html. https://snap.stanford.edu/data/com-
Friendster.html

[31] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo
Kyrola, and Joseph M. Hellerstein. 2012. Distributed GraphLab: A
Framework for Machine Learning and Data Mining in the Cloud. Proc.
VLDB Endow. 5, 8 (April 2012), 716-727.  https://doi.org/10.14778/
2212351.2212354

[32] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehn-
ert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: A
System for Large-scale Graph Processing. In Proceedings of the 2010
ACM SIGMOD International Conference on Management of Data (In-
dianapolis, Indiana, USA) (SIGMOD °10). ACM, New York, NY, USA,
135-146. https://doi.org/10.1145/1807167.1807184

[33] Mugilan Mariappan and Keval Vora. 2019. GraphBolt: Dependency-
Driven Synchronous Processing of Streaming Graphs. In Proceedings of
the Fourteenth EuroSys Conference 2019 (Dresden, Germany) (EuroSys
’19). ACM, New York, NY, USA, Article 25, 16 pages. https://doi.org/
10.1145/3302424.3303974

[34] David W Matula and Leland L Beck. 1983. Smallest-last ordering and
clustering and graph coloring algorithms. Journal of the ACM (JACM)
30, 3 (1983), 417-427.

[35] Frank McSherry. 2017. COST in the land of databases. https://github.
com/frankmcsherry/blog/blob/master/posts/2017-09-23.md.  https:
//github.com/frankmcsherry/blog/blob/master/posts/2017-09-23.md

[36] Frank McSherry, Michael Isard, and Derek G Murray. 2015. Scalability!
But at what {COST}?. In 15th Workshop on Hot Topics in Operating
Systems (HotOS {XV}).

[37] Batul J Mirza, Benjamin J Keller, and Naren Ramakrishnan. 2003. Study-
ing recommendation algorithms by graph analysis. Journal of Intelli-
gent Information Systems 20, 2 (2003), 131-160.

[38] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. 2013. A
Lightweight Infrastructure for Graph Analytics. In Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems Principles
(Farminton, Pennsylvania) (SOSP ’13). ACM, New York, NY, USA, 456—
471. https://doi.org/10.1145/2517349.2522739

[39] The University of Texas at Austin. 2019. Texas Advanced Computing
Center (TACC),. https://www.tacc.utexas.edu/


https://doi.org/10.1145/2741948.2741970
https://doi.org/10.1145/971617.971643
https://doi.org/10.1145/3192366.3192404
https://doi.org/10.1145/3192366.3192404
https://doi.org/10.1145/3035918.3035942
https://doi.org/10.1145/3035918.3035942
http://dl.acm.org/citation.cfm?id=2387880.2387883
http://dl.acm.org/citation.cfm?id=2685048.2685096
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1145/2248487.2151013
https://doi.org/10.1145/2248487.2151013
https://doi.org/10.1145/2807591.2807620
https://doi.org/10.1145/2503210.2503246
https://doi.org/10.1145/2524211.2524218
https://doi.org/10.1145/1772690.1772751
https://doi.org/10.1145/1772690.1772751
https://snap.stanford.edu/data/com-Friendster.html
https://snap.stanford.edu/data/com-Friendster.html
https://snap.stanford.edu/data/com-Friendster.html
https://snap.stanford.edu/data/com-Friendster.html
https://doi.org/10.14778/2212351.2212354
https://doi.org/10.14778/2212351.2212354
https://doi.org/10.1145/1807167.1807184
https://doi.org/10.1145/3302424.3303974
https://doi.org/10.1145/3302424.3303974
https://github.com/frankmcsherry/blog/blob/master/posts/2017-09-23.md
https://github.com/frankmcsherry/blog/blob/master/posts/2017-09-23.md
https://github.com/frankmcsherry/blog/blob/master/posts/2017-09-23.md
https://github.com/frankmcsherry/blog/blob/master/posts/2017-09-23.md
https://doi.org/10.1145/2517349.2522739
https://www.tacc.utexas.edu/

PLDI 20, June 15-20, 2020, London, UK

(40]

(41]

(42]

(43]

(4]

(45]

[46]
(47]

(48]

(49]

(50]

[51]

(52]

Sreepathi Pai and Keshav Pingali. 2016. A Compiler for Throughput
Optimization of Graph Algorithms on GPUs. In Proceedings of the
2016 ACM SIGPLAN International Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (Amsterdam, Nether-
lands) (OOPSLA 2016). ACM, New York, NY, USA, 1-19. https:
//doi.org/10.1145/2983990.2984015

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk:
Online Learning of Social Representations. In Proceedings of the 20th
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (New York, New York, USA) (KDD ’14). ACM, New York,
NY, USA, 701-710. https://doi.org/10.1145/2623330.2623732

The Lemur Project. 2013. The ClueWeb12 Dataset. http://lemurproject.
org/clueweb12/

Meikang Qiu, Lei Zhang, Zhong Ming, Zhi Chen, Xiao Qin, and Lau-
rence T Yang. 2013. Security-aware optimization for ubiquitous com-
puting systems with SEAT graph approach. J. Comput. System Sci. 79,
5(2013), 518-529.

Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. 2013. X-
Stream: Edge-Centric Graph Processing Using Streaming Partitions.
In Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles (Farminton, Pennsylvania) (SOSP 4AZ13). Associ-
ation for Computing Machinery, New York, NY, USA, 47224A$488.
https://doi.org/10.1145/2517349.2522740

Semih Salihoglu and Jennifer Widom. 2013. GPS: A Graph Pro-
cessing System. In Proceedings of the 25th International Conference
on Scientific and Statistical Database Management (Baltimore, Mary-
land, USA) (SSDBM). ACM, New York, NY, USA, Article 22, 12 pages.
https://doi.org/10.1145/2484838.2484843

Satu Elisa Schaeffer. 2007. Graph clustering. Computer science review
1, 1 (2007), 27-64.

Julian Shun. 2019. K-Core. http://jshun.github.io/ligra/docs/tutorial _
kcore.html

Julian Shun and Guy E. Blelloch. 2013. Ligra: A Lightweight Graph
Processing Framework for Shared Memory. In Proceedings of the 18th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming (Shenzhen, China) (PPoPP ’13). ACM, New York, NY, USA,
135-146. https://doi.org/10.1145/2442516.2442530

Julian Shun, Farbod Roosta-Khorasani, Kimon Fountoulakis, and
Michael W. Mahoney. 2016. Parallel Local Graph Clustering. Proc.
VLDB Endow. 9, 12 (Aug. 2016), 1041-1052. https://doi.org/10.14778/
2994509.2994522

AM Stankovic and MS Calovic. 1989. Graph oriented algorithm for
the steady-state security enhancement in distribution networks. IEEE
Transactions on Power Delivery 4, 1 (1989), 539-544.

Lei Tang and Huan Liu. 2010. Graph mining applications to social
network analysis. In Managing and Mining Graph Data. Springer,
487-513.

Keval Vora. 2019. LUMOS: Dependency-Driven Disk-Based Graph
Processing. In Proceedings of the 2019 USENIX Conference on Usenix

607

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

Youwei Zhuo, Jingji Chen, Qinyi Luo, Yanzhi Wang, Hailong Yang, Depei Qian, Xuehai Qian

Annual Technical Conference (Renton, WA, USA) (USENLX ATC °19).
USENIX Association, USA, 4294AS442.

Keval Vora, Rajiv Gupta, and Guoqing Xu. 2017. KickStarter: Fast and
Accurate Computations on Streaming Graphs via Trimmed Approxi-
mations. In Proceedings of the Twenty-Second International Conference
on Architectural Support for Programming Languages and Operating
Systems (Xi’an, China) (ASPLOS ’17). Association for Computing Ma-
chinery, New York, NY, USA, 237-251. https://doi.org/10.1145/3037697.
3037748

Keval Vora, Sai Charan Koduru, and Rajiv Gupta. 2014. ASPIRE: Exploit-
ing Asynchronous Parallelism in Iterative Algorithms Using a Relaxed
Consistency Based DSM. In Proceedings of the 2014 ACM International
Conference on Object Oriented Programming Systems Languages & Ap-
plications (Portland, Oregon, USA) (OOPSLA ’14). ACM, New York, NY,
USA, 861-878. https://doi.org/10.1145/2660193.2660227

Tianyi Wang, Yang Chen, Zengbin Zhang, Tianyin Xu, Long Jin, Pan
Hui, Beixing Deng, and Xing Li. 2011. Understanding graph sampling
algorithms for social network analysis. In 2011 31st International Con-
ference on Distributed Computing Systems Workshops. IEEE, 123-128.
Ming Wu, Fan Yang, Jilong Xue, Wencong Xiao, Youshan Miao, Lan
Wei, Haoxiang Lin, Yafei Dai, and Lidong Zhou. 2015. GraM: Scaling
Graph Computation to the Trillions. In Proceedings of the Sixth ACM
Symposium on Cloud Computing (Kohala Coast, Hawaii) (SoCC ’15).
ACM, New York, NY, USA, 408-421. https://doi.org/10.1145/2806777.
2806849

Wencong Xiao, Jilong Xue, Youshan Miao, Zhen Li, Cheng Chen, Ming
Wu, Wei Li, and Lidong Zhou. 2017. Tux2: Distributed Graph Compu-
tation for Machine Learning.. In NSDI USENIX Association, Berkeley,
CA, USA, 669-682.

Yuan Yu, Pradeep Kumar Gunda, and Michael Isard. 2009. Distributed
Aggregation for Data-Parallel Computing: Interfaces and Implemen-
tations. In Proceedings of the ACM SIGOPS 22nd Symposium on Op-
erating Systems Principles (Big Sky, Montana, USA) (SOSP aAZ09).
Association for Computing Machinery, New York, NY, USA, 247-260.
https://doi.org/10.1145/1629575.1629600

Torsten Zesch and Iryna Gurevych. 2007. Analysis of the Wikipedia
category graph for NLP applications. In Proceedings of the TextGraphs-2
Workshop (NAACL-HLT 2007). 1-8.

Mingxing Zhang, Yongwei Wu, Kang Chen, Xuehai Qian, Xue Li, and
Weimin Zheng. 2016. Exploring the Hidden Dimension in Graph
Processing. In Proceedings of the 12th USENIX Conference on Operating
Systems Design and Implementation (Savannah, GA, USA) (OSDI’16).
USENIX Association, Berkeley, CA, USA, 285-300. http://dl.acm.org/
citation.cfm?id=3026877.3026900

Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma.
2016. Gemini: A Computation-centric Distributed Graph Processing
System. In Proceedings of the 12th USENIX Conference on Operating
Systems Design and Implementation (Savannah, GA, USA) (OSDI’16).
USENIX Association, Berkeley, CA, USA, 301-316. http://dl.acm.org/
citation.cfm?id=3026877.3026901


https://doi.org/10.1145/2983990.2984015
https://doi.org/10.1145/2983990.2984015
https://doi.org/10.1145/2623330.2623732
http://lemurproject.org/clueweb12/
http://lemurproject.org/clueweb12/
https://doi.org/10.1145/2517349.2522740
https://doi.org/10.1145/2484838.2484843
http://jshun.github.io/ligra/docs/tutorial_kcore.html
http://jshun.github.io/ligra/docs/tutorial_kcore.html
https://doi.org/10.1145/2442516.2442530
https://doi.org/10.14778/2994509.2994522
https://doi.org/10.14778/2994509.2994522
https://doi.org/10.1145/3037697.3037748
https://doi.org/10.1145/3037697.3037748
https://doi.org/10.1145/2660193.2660227
https://doi.org/10.1145/2806777.2806849
https://doi.org/10.1145/2806777.2806849
https://doi.org/10.1145/1629575.1629600
http://dl.acm.org/citation.cfm?id=3026877.3026900
http://dl.acm.org/citation.cfm?id=3026877.3026900
http://dl.acm.org/citation.cfm?id=3026877.3026901
http://dl.acm.org/citation.cfm?id=3026877.3026901

	Abstract
	1 Introduction
	2 Background and Problem Formalization
	2.1 Graph and Graph Algorithm
	2.2 Distributed Graph Processing Frameworks
	2.3 Inefficiencies with Existing Frameworks

	3 SympleGraph Overview
	4 SympleGraph Analysis
	4.1 SympleGraph Primitives
	4.2 SympleGraph Analysis
	4.3 Discussion

	5 SympleGraph System
	5.1 Enforcing Dependency: Circulant Scheduling
	5.2 Differentiated Dependency Propagation
	5.3 Hiding Latency with Double Buffering

	6 Implementation Details
	7 Evaluation
	7.1 Evaluation Methodology
	7.2 Performance
	7.3 Computation and Communication Reduction
	7.4 Scalability
	7.5 Analysis of SympleGraph Optimizations

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

